A systematic review on phytoremediation of indoor air pollution
Abstract
Degradation of Indoor Air Quality (IAQ) due to confined spaces and insufficient ventilation has become a serious concern to human health. Published literature has established phytoremediation as an efficient removal mechanism of indoor air pollutants such as formaldehyde, Benzene, Toluene, Ethyl benzene, Xylene (BTEX), Volatile Organic Compounds (VOCs), and Particulate Matter (PM) using potted plants. This review discusses both conventional and enhanced phytoremediation for removing air pollutants and the parameters influencing the removal efficiencies. A literature review was conducted following the PRISMA guidelines to identify published literature on indoor air phytoremediation. After eliminating duplicates and reviewing articles, the articles related to indoor air phytoremediation from 2011 to the present were selected. The database was managed using Mendeley reference manager. Indoor air pollutants can be removed efficiently through phytoremediation using potted plants. Chlorophytum comosum removed the broadest range of contaminants, whereas Epipremnum aureum is the frequently used plant species for pollutant removal. Adding enhancing factors to the plant enhances their ability to remove pollutants. Inoculation of plants with soil bacteria such as Bacillus cereus ERBP is the most common enhancement method reported. The present study highlighted advancements in phytoremediation and factors affecting the pollutant removal efficiencies of plants. The findings demonstrated that enhanced phytoremediation is more effective at removing pollutants than the conventional method. Depending on the plant species used, the removal of indoor air pollutants may vary. The findings suggested that a combination of various plant species could be used to remove indoor air pollutants more efficiently.
2. Irga PJ, Pettit TJ, Torpy FR. The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Rev Environ Sci Biotechnol. 2018;17(2):395-415. doi:10.1007/s11157-018-9465-2
3. USEPA. The Inside Story: A Guide to Indoor Air Quality. Published 2023. https://www.epa.gov/indoor-air-quality-iaq/inside-story-guide-indoor-air-quality.
4. Nath A, Baruah N, Nonglait ML, Deka P. Biological contaminants in indoor environments of educational institutions. Aerobiologia (Bologna). 2022;39(1):1-20. doi:10.1007/s10453-022-09771-6.
5. Tran VV, Park D, Lee YC. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. International journal of environmental research and public health. 2020 Apr;17(8):2927.
6. Brilli F, Fares S, Ghirardo A, de Visser P, Calatayud V, Muñoz A, Annesi-Maesano I, Sebastiani F, Alivernini A, Varriale V, Menghini F. Plants for sustainable improvement of indoor air quality. Trends in plant science. 2018 Jun 1;23(6):507-12.
7. World Health Organization. World Health Statistics 2016 [OP]: Monitoring Health for the Sustainable Development Goals (SDGs). World Health Organization; 2016 Jun 8.
8. Bandehali S, Miri T, Onyeaka H, Kumar P. Current state of indoor air phytoremediation using potted plants and green walls. Atmosphere (Basel). 2021;12(4). doi:10.3390/atmos12040473.
9. Nandan A, Siddiqui NA, Singh C, Aeri A. Occupational and environmental impacts of indoor air pollutant for different occupancy: a review. Toxicol Environ Health Sci. 2021;13(4):303-322. doi:10.1007/s13530-021-00102-9.
10. Sonne C, Xia C, Dadvand P, Targino AC, Lam SS. Indoor volatile and semi-volatile organic toxic compounds: Need for global action. J Build Eng. 2022;62(September):105344. doi:10.1016/j.jobe.2022.105344.
11. Zhang ZF, Zhang X, Zhang X Ming, Liu LY, Li YF, Sun W. Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China. Chemosphere. 2020;250:126324. doi:10.1016/j.chemosphere.2020.126324.
12. Gawrońska H, Bakera B. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Heal. 2015;8(3):265-272. doi:10.1007/s11869-014-0285-4.
13. Kaunelienė V, Prasauskas T, Krugly E, Stasiulaitienė I, Čiužas D, Šeduikytė L, et al. Indoor air quality in low energy residential buildings in Lithuania. Building and environment. 2016 Nov 1;108:63-72.
14. Kumar R, Verma V, Thakur M, Singh G, Bhargava B. A systematic review on mitigation of common indoor air pollutants using plant-based methods: a phytoremediation approach. Air Qual Atmos Heal. 2023;16:1501-1527. doi:10.1007/s11869-023-01326-z.
15. Ravindra K, Mor S. Phytoremediation potential of indoor plants in reducing air pollutants. Front Sustain Cities. 2022;4. doi:10.3389/frsc.2022.1039710.
16. Britigan N, Alshawa A, Nizkorodov SA. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J Air Waste Manag Assoc. 2006;56(5):601-610. doi:10.1080/10473289.2006.10464467.
17. Teiri H, Pourzamani H, Hajizadeh Y. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere. 2018;197:375-381. doi:10.1016/j.chemosphere.2018.01.078.
18. Ghate S. Phytoremediation of indoor formaldehyde by Spathiphyllum Phytoremediation of Indoor Air using Spathiphyllum wallisii Regel, for Formaldehyde as an Indoor Pollutant. Int J Plant Environ. 2020 Jul 25;6(03):189-93. doi:10.18811/ijpen.v6i03.5.
19. Teiri H, Hajizadeh Y, Azhdarpoor A. A review of different phytoremediation methods and critical factors for purification of common indoor air pollutants: an approach with sensitive analysis. Air Qual Atmos Heal. 2022;15(3):373-391. doi:10.1007/s11869-021-01118-3.
20. Yang Y, Su Y, Zhao S. An efficient plant–microbe phytoremediation method to remove formaldehyde from air. Environ Chem Lett. 2020;18(1):197-206. doi:10.1007/s10311-019-00922-9.
21. Maurya A, Sharma D, Partap M, Kumar R, Bhargava B. Microbially-assisted phytoremediation toward air pollutants: Current trends and future directions. Environ Technol Innov. 2023;31:103140. doi:10.1016/j.eti.2023.103140.
22. Jung C, Awad J. Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates. Buildings. 2021;9:289. doi:https://doi.org/ 10.3390/buildings11070289.
23. Bhargava B, Malhotra S, Chandel A, Rakwal A, Kashwap RR, Kumar S. Mitigation of indoor air pollutants using Areca palm potted plants in real-life settings. Environ Sci Pollut Res. 2021;28(7):8898-8906. doi:10.1007/s11356-020-11177-1.
24. Armijos-Moya T, de Visser P, Ottelé M, van den Dobbelsteen A, Bluyssen PM. Air cleaning performance of two species of potted plants and different substrates. Appl Sci. 2022;12(1):284. doi:10.3390/app12010284.
25. El-sadek M, Koriesh E, Fuji E, Moghazy E, El-fatah YA. Correlation between some components of interior plants and their efficiency to reduce Formaldehyde, Nitrogen and Sulfur Oxides from indoor air. Int Res J Plant Sci. 2012;3:222-229. http://www.interesjournals.org/IRJPS.
26. Hörmann V, Brenske KR, Ulrichs C. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions. Environ Sci Pollut Res. 2018;25(1):447-458. doi:10.1007/s11356-017-0453-9.
27. Pegas PN, Alves CA, Nunes T, Bate-Epey EF, Evtyugina M, Pio CA. Could houseplants improve indoor air quality in schools? In: Journal of Toxicology and Environmental Health - Part A: Current Issues. Vol 75. ; 2012:1371-1380. doi:10.1080/15287394.2012.721169.
28. Sriprapat W, Roytrakul S, Thiravetyan P. Proteomic studies of plant and bacteria interactions during benzene remediation. J Environ Sci (China). 2020;94:161-170. doi:10.1016/j.jes.2020.03.052.
29. Nouri H, Hashempour Y. Phytoremediation of Cd and Pb in polluted soil: a systematic review. Int J Environ Anal Chem. 2023;103:6017–6026. doi.org/10.1080/03067319.2021.1946688.
30. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7). doi:10.1371/journal.pmed.1000097.
31. Xu Z, Wang L, Hou H. Formaldehyde removal by potted plant-soil systems. J Hazard Mater. 2011;192(1):314-318. doi:10.1016/j.jhazmat.2011.05.020.
32. Cao Y, Li F, Wang Y, et al. Assisted deposition of PM2.5 from indoor air by ornamental potted plants. Sustain. 2019;11(9):2546. doi:10.3390/su11092546.
33. Kim KJ, Yoo EH, Jeong M Il, Song JS, Lee SY, Kays SJ. Changes in the Phytoremediation Potential of Indoor Plants with Exposure to Toluene. HORTSCIENCE. 2011;46(12):1646-1649. doi:https://doi.org/10.21273/HORTSCI.46.12.1646.
34. Abbass OA, Sailor DJ, Gall ET. Effectiveness of indoor plants for passive removal of indoor ozone. Build Environ. 2017;119:62-70. doi:10.1016/j.buildenv.2017.04.007.
35. Parseh I, Teiri H, Hajizadeh Y, Ebrahimpour K. Phytoremediation of benzene vapors from indoor air by Schefflera arboricola and Spathiphyllum wallisii plants. Atmos Pollut Res. 2018;9(6):1083-1087. doi:10.1016/j.apr.2018.04.005.
36. Kim KJ, Kim HJ, Khalekuzzaman M, Yoo EH, Jung HH, Jang HS. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants. Environ Sci Pollut Res. 2016;23(7):6149-6158. doi:10.1007/s11356-016-6065-y.
37. Cruz M Dela, Tomasi G, Müller R, Christensen JH. Removal of volatile gasoline compounds by indoor potted plants studied by pixel-based fingerprinting analysis. Chemosphere. 2019;221:226-234. doi:10.1016/j.chemosphere.2018.12.125.
38. Mosaddegh MH, Jafarian A, Ghasemi A, Mosaddegh A. Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by D. deremensis and O. microdasys plants. Mosaddegh al J Environ Heal Sci Eng 2014,. 2014;12:39. http://www.ijehse.com/content/12/1/39.
39. Fooladi M, Moogouei R, Jozi SA, Golbabaei F, Tajadod G. Phytoremediation of BTEX from indoor air by Hyrcanian plants. Environ Heal Eng Manag. 2019;6(4):233-240. doi:10.15171/ehem.2019.26.
40. Sriprapat W, Boraphech P, Thiravetyan P. Factors affecting xylene-contaminated air removal by the ornamental plant Zamioculcas zamiifolia. Environ Sci Pollut Res. 2014;21(4):2603-2610. doi:10.1007/s11356-013-2175-y.
41. Ghate S. Phytoremediation of indoor formaldehyde by Spathiphyllum Phytoremediation of Indoor Air using Spathiphyllum wallisii Regel, for Formaldehyde as an Indoor Pollutant. Int J Plant Environ. 2020;6:189-193. doi:10.18811/ijpen.v6i03.5.
42. Torpy FR, Irga PJ, Burchett MD. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For Urban Green. 2014;13(2):227-233. doi:10.1016/j.ufug.2013.12.004.
43. Treesubsuntorn C, Thiravetyan P. Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata. Atmos Environ. 2012;57:317-321. doi:10.1016/j.atmosenv.2012.04.016.
44. Wannomai T, Kemacheevakul P, Thiravetyan P. Removal of Trimethylamine from Indoor Air Using Potted Plants. Aerosol Air Qual Res. 2019;19:1105-1113. doi:https://doi.org/10.4209/aaqr.2018.09.0334.
45. Sirohi S, Kumar S, Yadav C, Banerjee D, Yadav P. Sphagnum: A promising indoor air purifier. J Environ Eng Sci. 2020;15(4):208-215. doi:10.1680/jenes.19.00051.
46. Weerasinghe NH, Silva PK, Jayasinghe RR, Abeyrathna WP, John GKP, Halwatura RU. Reducing CO2 level in the indoor urban built environment: Analysing indoor plants under different light levels. Clean Eng Technol. 2023;14(April):100645. doi:10.1016/j.clet.2023.100645.
47. Sriprapat W, Suksabye P, Areephak S, Klantup P, Waraha A, Sawattan A, et al. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants. Ecotoxicology and environmental safety. 2014 Apr 1;102:147-51.
48. Budaniya M, Rai AC. Effectiveness of plants for passive removal of particulate matter is low in the indoor environment. Build Environ. 2022;222 (July). doi:10.1016/j.buildenv.2022.109384.
49. Teiri H, Pourzamzni H, Hajizadeh Y. Phytoremediation of formaldehyde from indoor environment by ornamental plants: An approach to promote occupants health. Int J Prev Med. 2018;9(1). doi:10.4103/ijpvm.IJPVM_269_16.
50. Ullah H, Treesubsuntorn C, Thiravetyan P. Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO2 emission. Environ Sci Pollut Res. 2021;28(1):538-546. doi:10.1007/s11356-020-10342-w.
51. Sriprapat W, Thiravetyan P. Phytoremediation of BTEX from indoor air by zamioculcas zamiifolia. Water Air Soil Pollut. 2013;224(3). doi:10.1007/s11270-013-1482-8.
52. Gong Y, Zhou T, Wang P, Lin Y, Zheng R, Zhao Y, Xu B. Fundamentals of ornamental plants in removing benzene in indoor air. Atmosphere. 2019 Apr 24;10(4):221.
53. Siswanto D, Chhon Y, Thiravetyan P. Uptake and degradation of trimethylamine by Euphorbia milii. Environ Sci Pollut Res. 2016;23(17):17067-17076. doi:10.1007/s11356-016-6874-z.
54. Zuo L, Wu D, Yu L, Yuan Y. Phytoremediation of formaldehyde by the stems of Epipremnum aureum and Rohdea japonica. Environ Sci Pollut Res. 2022;29(8):11445-11454. doi:10.1007/s11356-021-16571-x.
55. Lin MW, Chen LY, Chuah YK. Investigation of a potted plant (Hedera helix) with photo-regulation to remove volatile formaldehyde for improving indoor air quality. Aerosol Air Qual Res. 2017;17(10):2543-2554. doi:10.4209/aaqr.2017.04.0145.
56. Panyametheekul S, Rattanapun T, Morris J, Ongwandee M. Foliage houseplant responses to low formaldehyde levels. Build Environ. 2019;147(September 2018):67-76. doi:10.1016/j.buildenv.2018.09.053.
57. Akhavan Markazi V, Naderi R, Danaee E, Kalatehjari S, Nematollahi F. Comparison of phytoremediation potential of Pothos and Sansevieria under indoor air pollution. Journal of Ornamental Plants. 2022 Sep 1;12(3):235-45.
58. Song JE, Kim YS, Sohn JY. A study on the seasonal effects of plant quantity on the reduction of VOCs and Formaldehyde. J Asian Archit Build Eng. 2011;10(1):241-247. doi:10.3130/jaabe.10.241.
59. Ullah H, Treesubsuntorn C, Thiravetyan P. Application of exogenous indole-3-acetic acid on shoots of Zamioculcas zamiifolia for enhancing toluene and formaldehyde removal. Air Qual Atmos Heal. 2020;13(5):575-583. doi:10.1007/s11869-020-00820-y.
60. Ghate S. Phytoremediation of Formaldehyde in Indoor Environment with Common House Plants and Pseudomonas Chlororaphis. J Earth Environ Sci Res. 2021;3(6):1-7. doi:10.47363/jeesr/2021(3)160.
61. Irga PJ, Torpy FR, Burchett MD. Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos Environ. 2013;77:267-271. doi:10.1016/j.atmosenv.2013.04.078.
62. Jindachot W, Treesubsuntorn C, Thiravetyan P. Effect of Individual/Co-culture of Native Phyllosphere Organisms to Enhance Dracaena sanderiana for Benzene Phytoremediation. Water Air Soil Pollut. 2018;229(3). doi:10.1007/s11270-018-3735-z.
63. Pheomphun P, Treesubsuntorn C, Jitareerat P, Thiravetyan P. Contribution of Bacillus cereus ERBP in ozone detoxification by Zamioculcas zamiifolia plants: Effect of ascorbate peroxidase, catalase and total flavonoid contents for ozone detoxification. Ecotoxicol Environ Saf. 2019;171:805-812. doi:10.1016/j.ecoenv.2019.01.028.
64. Khaksar G, Treesubsuntorn C, Thiravetyan P. Endophytic Bacillus cereus ERBP-Clitoria ternatea interactions: Potentials for the enhancement of gaseous formaldehyde removal. Environ Exp Bot. 2016;126:10-20. doi:10.1016/j.envexpbot.2016.02.009.
65. Pheomphun P, Treesubsuntorn C, Thiravetyan P. Effect of exogenous catechin on alleviating O3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotoxicol Environ Saf. 2019;180:374-383. doi:10.1016/j.ecoenv.2019.05.002.
66. Ahn CH, Kim NS, Shin JY, et al. Enhanced detoxification of exogenous toluene gas in transgenic Ardisia pusilla expressing AtNDPK2 gene. Hortic Environ Biotechnol. 2020;61(5):949-957. doi:10.1007/s13580-020-00275-1.
67. Lee SY, Lee JL, Kim JH, Kim KJ. Enhanced removal of exogenous formaldehyde gas by AtFALDH-transgenic petunia. Hortic Environ Biotechnol. 2015;56(2):247-254. doi:10.1007/s13580-015-0087-0.
68. Treesubsuntorn C, Lakaew K, Autarmat S, Thiravetyan P. Enhancing benzene removal by Chlorophytum comosum under simulation microgravity system: Effect of light-dark conditions and indole-3-acetic acid. Acta Astronaut. 2020;175:396-404. doi:10.1016/j.actaastro.2020.05.061.
69. Daudzai Z, Thiravetyan P, Treesubsuntorn C. Inoculated Clitoria ternatea with Bacillus cereus ERBP for enhancing gaseous ethylbenzene phytoremediation: Plant metabolites and expression of ethylbenzene degradation genes. Ecotoxicol Environ Saf. 2018;164:50-60. doi:10.1016/j.ecoenv.2018.07.121.
70. Siswanto D, Thiravetyan P. Improvement of Trimethylamine Uptake by Euphorbia milii: Effect of Inoculated Bacteria. J Trop Life Sci. 2016;6(2):123-111. doi:10.11594/jtls.06.02.11.
71. Aydogan A, Montoya LD. Formaldehyde removal by common indoor plant species and various growing media. Atmos Environ. 2011;45(16):2675-2682. doi:10.1016/j.atmosenv.2011.02.062.
72. Zhang D, Xiang T, Li P, Bao L. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde. Genet Mol Biol. 2011;34:634-639. doi:10.1590/S1415-47572011005000036.
73. Gohain M, Deka P. Trace metals in indoor dust from a university campus in Northeast India: implication for health risk. Environ Monit Assess. 2020;192(11):741. doi:10.1007/s10661-020-08684-6.
74. Delgado-Saborit JM, Aquilina NJ, Meddings C, Baker S, Harrison RM. Relationship of personal exposure to volatile organic compounds to home, work and fixed site outdoor concentrations. Sci Total Environ. 2011;409(3):478-488. doi:10.1016/j.scitotenv.2010.10.014.
75. Ayoko GA, Wang H. Volatile Organic Compounds in Indoor Environments. Vol 64.; 2018. doi:10.1007/698_2014_259.
76. Chin JY, Godwin C, Parker E, et al. Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air. 2014;24(4):403-415. doi:10.1111/ina.12086.
77. Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int. 2011;37(4):743-765. doi:10.1016/j.envint.2011.01.005.
78. Lu S, Yang X, Li S, Chen B, Jiang Y, Wang D, Xu L. Effects of plant leaf surface and different pollution levels on PM2.5 adsorption capacity. Urban Forestry & Urban Greening. 2018 Aug 1;34:64-70.
79. Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW. Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ. 2012;427-428:347-354. doi:10.1016/j.scitotenv.2012.03.084.
80. Shao F, Wang L, Sun F, Li G, Yu L, Wang Y, Zeng X, Yan H, Dong L, Bao Z. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Science of the total environment. 2019 Feb 20;652:939-51.
81. Weerakkody U, Dover JW, Mitchell P, Reiling K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For Urban Green. 2018;30(January):98-107. doi:10.1016/j.ufug.2018.01.001.
82. Danila E, Lucache DD. 893-Article Text-874-1-6-20210514 (1). J Electr Eng. Published online 2013.
Files | ||
Issue | Vol 9 No 2 (2024): Spring 2024 | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/japh.v9i2.15928 | |
Keywords | ||
Indoor air Conventional and enhanced phytoremediation Removal efficiencies Potted plants× |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |