Original Research

Fabrication of electrospun membranes for air sampling applications: A statistical optimization approach

Abstract

Introduction: The applicability of Nanofiber (NF) membranes in air sampling of pollutants for the purpose of determining the airborne concentration has received little attention around the world. The present study aims to optimize the fabrication of NF membrane for the of air sampling application.
Materials and methods: The polyvinyl chloride NF membranes were fabricated using needle-based solution electrospinning technique. The experimental design was prepared by Design-Expert v7.0 and data analysis
was done by Central Composite Design (CCD) base on Response Surface Methodology (RSM) technique. The ability of the fabricated membranes in air sampling applications was performed by sampling of airborne crystalline silica by them using the National Institute for Occupational Safety and Health (NIOSH7602) method and then comparing with the commercial PVC membranes.
Results: The fabricated NF membranes had a mean porosity of 31.60% compared to a porosity of 25.1% in the case of commercial Polyvinyl Chloride (PVC) membranes. The electrospun NF membranes had mean pressure drop of 194.23 Pa, which is lower than the 204 Pa pressure drop of commercial PVC filters. The mean concentration of silica sampled by the electrospun NF membrane was 0.14 mg/m3 while this was 0.03 mg/m3
for commercial PVC membrane. The difference concentration of crystalline silica sampled by NF and commercial PVC membranes had the strongest relationship with the electrospinning solution concentration (r=-0.785, p>0.05).
Conclusion: The NF membrane has high performance in sampling the crystalline silica dust from the air stream compared to commercial PVC membranes.

1. Lee H, Jeon S. Polyacrylonitrile Nanofiber
Membranes Modified with Ni-Based
Conductive Metal Organic Frameworks for Air
Filtration and Respiration Monitoring. ACS
Applied Nano Materials. 2020;3(8):8192-8.
https://pubs.acs.org/doi/10.1021/
acsanm.0c0161.
2. Liu H, Zhang S, Liu L, Yu J, Ding B. High‐
Performance PM0.3 Air Filters Using Self‐
Polarized Electret Nanofiber/Nets. Advanced
Functional Materials. 2020;30(13):1909554.
https://onlinelibrary.wiley.com/doi/
abs/10.1002/adfm.201909554
3. Kaur GA, Shandilya M, Rana P, Thakur S,
Uniyal P. Modification of structural and magnetic
properties of Co0. 5Ni0. 5Fe2O4 nanoparticles
embedded Polyvinylidene Fluoride nanofiber
membrane via electrospinning method. NanoStructures & Nano-Objects. 2020;22:100428.
https://af.booksc.eu/book/81123835/f0cb0b
4. Figoli A, Ursino C, Sanchez Ramirez DO,
Carletto RA, Tonetti C, Varesano A, De Santo
MP, Cassano A, Vineis C. Fabrication of
electrospun keratin nanofiber membranes for
air and water treatment. Polymer Engineering
& Science. 2019 Jul;59(7):1472-8. https://
onlinelibrary.wiley.com/doi/abs/10.1002/
pen.25146
5. Dehghan SF, Golbabaei F, Maddah B,
Latifi M, Pezeshk H, Hasanzadeh M, et al.
Optimization of Electrospinning Parameters
for PAN-MgO Nanofibers Applied in Air
Filtration. Journal of the Air & Waste
Management Association. 2016;66(9):912-21.
https://www.sciencedirect.com/science/article/
abs/pii/S2352507X20300068
6. Mohraz MH, Yu IJ, Beitollahi A, Dehghan
SF, Shin JH, Golbabaei F. Assessment
of the potential release of nanomaterials
from electrospun nanofiber filter media.
NanoImpact. 2020 Jul 1;19:100223. https://
www.sciencedirect.com/science/article/abs/
pii/S2452074820300173
7. Strandberg B, Julander A, Sjöström M,
Lewné M, Akdeva HK, Bigert C. Evaluation of
polyurethane foam passive air sampler (PUF)
as a tool for occupational PAH measurements.
Chemosphere. 2018 Jan 1;190:35-42. https://
www.sciencedirect.com/science/article/pii/
S004565351731531X
8. Ferguson RM, Garcia‐Alcega S, Coulon F,
Dumbrell AJ, Whitby C, Colbeck I. Bioaerosol
biomonitoring: Sampling optimization for
molecular microbial ecology. Molecular
ecology resources. 2019;19(3):672-
90. https://onlinelibrary.wiley.com/doi/
full/10.1111/1755-0998.13002
9. Farhangian M, Dehghan SF, Jafari MJ,
Pirposhteh EA, Khalilinejad A, Tavako
E. Feasibility Study on the Application of
Electrospun Nanofiber Webs for the Air
Sampling of Crystalline Silica. Industrial
Health 2021;596. https://doi.org/10.2486/
indhealth.20
10. Franks CM. Too Little Too Late:
The Infeasibility of OSHA's Silica
Standards in the Oil Industry. . Mary's
LJ. 2017;49:819. https://heinonline.org/
HOL/LandingPage?handle=hein.journals/
stmlj49&div=28&id=&page=
11. Maciejewska A. Occupational exposure
assessment to crystalline silica dust: Approach
in Poland and worldwide. International Journal
of Occupational Medicine and Environmental
Health. 2008 Jan 1;21(1):1. https://pubmed.
ncbi.nlm.nih.gov/18482900/
12. Chen W, Liu Y, Wang H, Hnizdo E, Sun Y,
Su L, et al. Long-term exposure to silica dust
and risk of total and cause-specific mortality
in Chinese workers: a cohort study. PLoS
medicine.2012;9(4):e1001206. https://journals.
plos.org/plosmedicine/article?id=10.1371/
journal.pmed.1001206
13. Wilbourn JD, McGregor DB, Partensky
C, Rice JMJEhp. IARC reevaluates silica and
related substances. Environmental Health
Perspectives. 1997 Jul;105(7):756-9. https:/pubmed.ncbi.nlm.nih.gov/9294723/
14. Omidianidost A, Ghasemkhani M, Kakooei
H, Shahtaheri SJ, Ghanbari M. Risk assessment
of occupational exposure to crystalline silica
in small foundries in Pakdasht, Iran. Iranian
journal of public health. 2016;45(1):70.
https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4822397/
15. Bahrami AR, Golbabai F, Mahjub H,
Qorbani F, Aliabadi M, Barqi M. Determination
of exposure to respirable quartz in the stone
crushing units at Azendarian-West of Iran.
Industrial health. 2008;46(4):404-8. https://
pubmed.ncbi.nlm.nih.gov/18716390/
16. Akbar-Khanzadeh F, Brillhart RL.
Respirable crystalline silica dust exposure
during concrete finishing (grinding) using
hand-held grinders in the construction
industry. Annals of Occupational Hygiene.
2002;46(3):341-6. https://academic.oup.com/
annweh/article/46/3/341/271651?login=true
17. Rappaport SM, Goldberg M, Susi PA,
Herrick RF. Excessive exposure to silica
in the US construction industry. Annals of
Occupational Hygiene. 2003;47(2):111-22.
https://academic.oup.com/annweh/article/47/2
/111/133229?login=true
18. Jaakkola MS, Sripaiboonkij P, Jaakkola
JJ. Effects of occupational exposures and
smoking on lung function in tile factory
workers. International archives of occupational
and environmental health. 2011;84(2):151-
8. https://link.springer.com/article/10.1007/
s00420-010-0603-6
19. Jebelli B, Ghazi I, Mahamoodzadeh A,
Ghazanchaei E. Silica exposure in the glass
industry and human health risk assessment.
International Journal of Health System and
Disaster Management. 2015;3(3):151. https://
www.ijhsdm.org/article.asp?issn=2347-
9019;year=2015;volume=3;issue=3;spage=15
1;epage=155;aulast=Jebelli
20. Akgun M, Gorguner M, Meral M, Turkyilmaz
A, Erdogan F, Saglam L, et al. Silicosis caused
by sandblasting of jeans in Turkey: a report of
two concomitant cases. Journal of occupational
health. 2005;47(4):346-9. https://pubmed.ncbi.
nlm.nih.gov/16096363/
21. Chen W, Yang J, Chen J, Bruch JJAjoim.
Exposures to silica mixed dust and cohort
mortality study in tin mines: Exposure‐response
analysis and risk assessment of lung cancer.
American journal of industrial medicine. 2006
Feb;49(2):67-76.2006;49(2):67-76. https://
pubmed.ncbi.nlm.nih.gov/16362950/
22. NIOSH. SILICA, Respirable Crystalline,
by IR (KBr pellet)7602:NIOSH Manual of
Analytical Methods (NMAM), Fifth Edition.
Fifth Edition ed. California NIOSH; 2017.
https://manualzz.com/doc/9342194/nioshmethod-7602---silica--crystalline--by-ir--kbrpellet23. Liu Y, Hao M, Chen Z, Liu L, Liu Y,
Yang W, et al. A review on recent advances in
application of electrospun nanofiber materials
as biosensors. Current Opinion in Biomedical
Engineering. 2020 Mar 1;13:174-89. https://
www.mdpi.com/2073-4360/13/21/3746/htm
24. Matulevicius J, Kliucininkas L,
Martuzevicius D, Krugly E, Tichonovas M,
Baltrusaitis J. Design and characterization
of electrospun polyamide nanofiber media
for air filtration applications. Journal of
nanomaterials. 2014;2014. https://www.
hindawi.com/journals/jnm/2014/859656/
25. Bao L, Seki K, Niinuma H, Otani Y, Balgis R,
Ogi T, et al. Verification of slip flow in nanofiber
filter media through pressure drop measurement
at low-pressure conditions. Separation and
purification technology. 2016;159:100-7.
https://www.sciencedirect.com/science/article/
abs/pii/S1383586615304147
26. Tarus B, Fadel N, Al-Oufy A, El-Messiry
M. Effect of polymer concentration on the
morphology and mechanical characteristics
of electrospun cellulose acetate and poly
(vinyl chloride) nanofiber mats. Alexandria
Engineering Journal. 2016 Sep 1;55(3):2975-
84. https://www.sciencedirect.com/science/
article/pii/S1110016816300813
27. Mazlomi A, Golbabaei F, Farhang Dehghan
S, Abbasinia M, Mahmoud Khani S, Ansari
M, et al. The influence of occupational heat
exposure on cognitive performance and blood
level of stress hormones: A field study report.
International journal of occupational safety
and ergonomics. 2017;23(3):431-9. https://
pubmed.ncbi.nlm.nih.gov/27852154/
28. Mohammadi H, Dehghan SF, Moradi
N, Suri S, Pirposhteh EA, Ardakani SK,
et al. Assessment of sexual hormones in
foundry workers exposed to heat stress
and electromagnetic fields. Reproductive
Toxicology. 2021;101:115-23. https://
doiorg/101016/jreprotox202012015
29. Farhangian M, Dehghan SF, Jafari MJ,
Pirposhteh EA, Khalilinejad A, Tavakol
E. Feasibility study on the application of
electrospun nanofiber webs for the air
sampling of crystalline silica. Industrial Health.
2021:2020-0236. https://pubmed.ncbi.nlm.nih.
gov/34588378/
30. ISO. ISO 29463: High-efficiency filters
and filter media for removing particles in air--
Part 3: Testing flat sheet filter media. Geneva:
International Organization for Standardization;
2011. https://www.iso.org/standard/51837.
html
31. KhaliliNeJad A. Fabrication study of
elecrospun polyvinyl chloride nanofiberous
filter media for crystalline silica sampling in
air. Tehra, Iran: Shhid Beheshti University of
Medical Sciences; 2020. http://dlib.sbmu.ac.ir/
faces/search/bibliographic/biblioFullView.
jspx?_afPfm=3xqg8a7ns
32. Li Y, Huang Z, Lǚ Y. Electrospinning of
nylon-6, 66, 1010 terpolymer. 2006;42(7):1696-
704. https://www.sciencedirect.com/science/
article/abs/pii/S0014305706000553
33. Boland ED, Wnek GE, Simpson DG,
Pawlowski KJ, Bowlin GLJJoMS, Part A.
Tailoring tissue engineering scaffolds using
electrostatic processing techniques: a study of
poly (glycolic acid) electrospinning. Journal
of Macromolecular Science, Part A. 2001 Nov
30;38(12):1231-43. https://www.tandfonline.
com/doi/abs/10.1081/MA-100108380
34. Gu SY, Ren JJMm, Engineering. Process
Optimization and empirical modeling for
electrospun poly (D, L‐lactide) fibers using
response surface methodology. Macromolecular
materials and Engineering. 2005 Nov
4;290(11):1097-105. https://onlinelibrary.
wiley.com/doi/abs/10.1002/mame.200500215
35. Dehghan SF, Golbabaei F, Maddah B,
Yarahmadi R, Zadeh AS. Fabrication and
optimization of electrospun polyacrylonitrile
nanofiber for application in air filtration. Iran
Occupational Health. 2016;13(5):11-23. http://
jips.ippi.ac.ir/index.php/issst/article_1749.
html?lang=en
36. Iqbal T. An investigation on the effect of
solution concentration, applied voltage and
collection distance on electrospun fibres of PVA
solutions (Doctoral dissertation, University of
Birmingham). https://www.tandfonline.com/
doi/pdf/10.1080/10962247.2016.1162228
37. Dehghan S, Golbabaei F, Mousavi T,
Mohammadi H, Kohneshahri M, Bakhtiari
R. Production of nanofibers containing
magnesium oxide nanoparticles for the
purpose of bioaerosol removal. Pollution.
2020;6(1):185-96. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC865575038. Ziabari M, Mottaghitalab V, Haghi AK.
A novel approach for analysis of processing
parameters in electrospinning of nanofibers.
Nanofibers: Fabrication, Performance, and
Applications. 2009 Jan 1:153-82. https://dro.
deakin.edu.au/view/DU:30125441
39. Danwanichakul P, Danwanichakul D.
Two-dimensional simulation of electrospun
nanofibrous structures: connection of
experimental and simulated results. Journal
of Chemistry. 2014 Jan 1;2014. https://www.
hindawi.com/journals/jchem/2014/479139
Files
IssueVol 7 No 1 (2022): Winter 2022 QRcode
SectionOriginal Research
DOI https://doi.org/10.18502/japh.v7i1.8917
Keywords
Optimization; Electrospinning; Polyvinyl chloride (PVC) membranes; Crystalline silica; Air sampling

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Khalilinejad A, Akhlaghi Pirposhteh E, Jafari MJ, Farhangian M, Tavakol E, Farhang Dehghan S. Fabrication of electrospun membranes for air sampling applications: A statistical optimization approach. JAPH. 2022;7(1):15-32.