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ABSTRACT

Introduction: Air quality forecasting, particularly predicting Particulate 
Matter (PM2.5 ) concentrations, has gained significant attention due to its 
critical implications for public health and environmental management. 
Accurately predicting PM2.5 , a harmful air pollutant associated with respiratory 
and cardiovascular diseases, is vital for effective air quality management in 
densely populated urban areas.
Materials and methods: This study uses various meteorological and 
environmental data combinations in Tehran, Iran, this study investigates the 
efficacy of three predictive modeling techniques Auto Regressive Integrated 
Moving Average (ARIMA), Extreme Gradient Boosting (XGBoost), and 
Long Short-Term Memory (LSTM) in forecasting daily and monthly PM2.5 

levels. The models were evaluated based on performance metrics such as Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), and R² scores. 
Results: Results indicate that XGBoost excelled in daily predictions when 
using solely meteorological data, achieving an R² score of 0.998674, while 
ARIMA demonstrated strong predictive capacity but struggled with added 
complexity. LSTM maintained reasonable performance amidst increased 
data input but faced challenges in both daily and monthly forecasts. Monthly 
predictions from all models proved less reliable, particularly with ARIMA 
yielding negative R² values, indicating suboptimal performance compared to 
simplistic models. 
Conclusion: The findings highlight the importance of model selection 
and feature engineering in accurately predicting PM2.5 levels. The study 
suggests a shift towards hybrid modeling approaches and incorporating 
diverse environmental data to enhance forecasting accuracy in air quality 
management, particularly for long-term predictions. 
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Introduction 

Air pollution has emerged as a quintessential 
global environmental challenge, significantly 
impacting urban populations worldwide. Modern 
cities are increasingly burdened by deteriorating 
air quality, with alarming statistics indicating that 
approximately 92% of the world's population 
resides in areas exceeding the World Health 
Organization's (WHO) air quality guidelines 
[1-3]. The WHO and the International Agency 
for Research on Cancer (IARC) have classified 
air pollution as a human carcinogen, resulting 
in approximately 9 million deaths annually, 
accounting for 16% of global fatalities. If current 
trends persist, air pollution will become the 
leading cause of premature death by 2050 [4]. 

The detrimental health effects linked to air 
pollution are extensive, including aggravated 
cardiovascular and respiratory illnesses, asthma, 
and emphysema. Research indicates that ambient 
air pollution has shortened global lifespans by an 
average of 1.8 years. Furthermore, the economic 
ramifications are staggering, with an estimated 
global cost of $ 5 trillion each year due to premature 
deaths, healthcare expenses, and lost labor [5]. 
Among the various pollutants, Particulate Matter 
(PM), particularly PM2.5 and PM10, has garnered 
increased attention due to their significant health 
impacts and ecological consequences [6, 7] and 
respiratory ailments [8, 9]. Notably, exposure 
to PM2.5 resulted in approximately 4.58 million 
deaths in 2017, with ambient PM2.5 responsible 
for 64.2% of these fatalities [10]. Despite its 
known risks, the prediction and monitoring of 
PM2.5 levels remain complex due to various 
factors, including the sparse availability of 
ground monitoring stations in urban areas and 
the challenges posed by urbanization, population 
density, and high operational costs [11].

Tehran, the capital of Iran, presents a unique 
case study in air quality management due to its 
geographical features, climatic conditions, and 
rapid urbanization. Nestled within a valley and 
surrounded by mountains, the city experiences 

meteorological phenomena that can trap 
pollutants close to the ground, exacerbating 
air pollution levels. Furthermore, high levels 
of vehicular traffic, industrial emissions, and 
construction activities contribute to the persistent 
presence of PM2.5 in the air. Understanding 
the dynamics of PM2.5 pollution in Tehran is 
essential for implementing effective public health 
interventions and environmental policies [12, 13].

Accurate forecasting of PM2.5 concentrations is 
vital for timely decision-making and effective 
air quality management. Traditional approaches 
such as AutoRegressive Integrated Moving 
Average (ARIMA) have been widely used 
for time series forecasting [14, 15]; however, 
they often struggle to capture the complex 
relationships within environmental data. The 
rise of machine learning techniques, particularly 
XGBoost (Extreme Gradient Boosting) and Long 
Short-Term Memory (LSTM) networks, offers 
exciting new possibilities [16, 17]. These modern 
algorithms have shown great promise in handling 
large datasets, nonlinear correlations, and time-
dependent patterns.

This study aims to explore and compare the 
predictive performance of ARIMA, XGBoost, 
and LSTM models in forecasting daily and 
monthly PM2.5 concentrations in Tehran. It 
utilizes a comprehensive dataset that includes 
meteorological factors, traffic data, and cloudiness 
information. The research seeks to achieve the 
following objectives: 

1. Investigate the effectiveness of different 
modeling techniques in predicting PM2.5 levels 
and identify the strengths and limitations of each 
method.

2. Examine the influence of meteorological 
variables and traffic patterns on PM2.5 forecasting. 

By leveraging advanced modeling techniques, 
this research aims to enhance the understanding 
of PM2.5 dynamics, ultimately aiding in 
the development of effective public health 
interventions and environmental policies aimed 
at reducing air pollution levels.
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2. Theoretical modeling

This study evaluates the predictive performance 
of PM2.5 concentration estimation across various 
configurations of ground and satellite data in 
Tehran. Specifically, we designed three distinct 
sections to analyze the effects of combining 
different datasets on the accuracy of PM2.5 
predictions.

Materials and methods

Study area

Tehran is located between latitude 35° 35′ 
N and 35° 48′ N and longitude 51° 17′ E to 
51° 33′ E. The city is situated at an elevation 
exceeding 1,200 m above sea level, with a 
topographical range of 700 m between its 

highest and lowest points. This urban area is 
home to approximately 13.3 million residents, 
supplemented by around 10 million commuters 
[18]. Air quality in central Iran, particularly 
in Tehran, is sometimes compromised by dust 
storms originating from various sources [19]. 
However, the most significant contributors 
to air pollution are localized anthropogenic 
factors, including rapid demographic growth, 
and the conversion of agricultural lands and 
natural areas into urban spaces. Notably, mobile 
sources (vehicles) account for nearly 85% of 
total pollutants and 70% of PM emissions [20]. 
The surrounding Alborz Mountains to the north 
and Bibi Shahrbanoo Mountain to the southeast 
exacerbate pollution by channeling winds that 
carry pollutants from western industrial zones to 
the eastern parts of Tehran [21] (Fig. 1).

Fig. 1. Geographical location of Tehran province
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Data collection

We collected data from 22 air quality monitoring 
stations across the Tehran metropolitan area. 
The dataset included meteorological variables 
(temperature, wind speed, humidity, precipitation, 
and boundary layer height) and PM2.5 
concentration levels, district-specific traffic, and 
cloudiness data. These localized observations are 
essential for understanding pollution dynamics 
within Tehran (Fig. 2). Meteorological data 
were sourced from the Iranian Meteorological 
Organization, traffic data from the Greater 
Tehran Traffic Control Company, and PM2.5 
measurements from the Air Quality Control Site. 

Preprocessing and post processing of ground 
and traffic data

To ensure the reliability and integrity of the 
dataset, we employed advanced estimation 
methods to reconstruct incomplete time series for 

both ground and traffic data. This preprocessing 
phase was crucial in preparing the data for 
subsequent analysis and modeling.

Manging missing dadat

Ground data interpolation

For missing values in meteorological 
measurements, we utilized spatiotemporal 
interpolation techniques such as kriging. This 
method leverages both spatial and temporal 
correlations within the data, which enables 
more accurate estimates of missing values by 
considering the relationships between nearby 
observations. For continuous variables with 
smaller gaps, linear interpolation was applied, 
estimating missing values based on adjacent 
time points. This approach was particularly 
effective for variables like PM2.5 concentrations 
and meteorological data exhibiting stable trends 
over time, ensuring that minor gaps did not 

Fig. 2. Geographic locations of Tehran’s air quality stations
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compromise the dataset's integrity.

Advanced compensation techniques

In scenarios where variables exhibited low 
variance, such as temperature and wind speed, 
we implemented mean or median compensation 
methods. These measures of central tendency 
provided reliable estimates for the missing data 
points, thereby allowing the dataset to remain 
robust and representative of actual conditions. 

Missing date management in traffic data

The traffic dataset required specific management 
to achieve uniform temporal coverage, ensuring 
that there were exactly 365 days of data for 
each monitoring station. Missing dates were 
systematically added, and interpolated values 
for those dates were derived from adjacent 
observations. This process was crucial for 
capturing the seasonal effects of traffic levels on 
PM2.5 concentrations, providing essential data for 
subsequent analyses.

Traffic data interpolation

In light of inconsistencies in traffic data stemming 
from varying reporting standards and monitoring 
infrastructure across regions, we implemented 
several strategies to ensure consistency. For 
variables with complex relationships, such 
as traffic congestion, we applied K-Nearest 
Neighbors (KNN) compensation. This technique 
estimates missing values by considering 
the nearest neighbors in the dataset, thereby 
preserving the relationships and patterns inherent 
in the traffic data.

For filling temporal gaps in traffic data, we 
relied on historical trends and nearest-neighbor 
methods, which helped maintain continuity 
in the time series. Furthermore, outliers were 
detected and removed using thresholds defined 
by methodologies such as the Interquartile 
Range (IQR) and Z-score thresholds. These 

steps enhanced the integrity of the dataset while 
minimizing noise, ensuring that extreme values 
did not skew the results.

Spatial coordination

Traffic data were spatially linked to specific 
areas of Tehran using geographic coordinates 
that corresponded with the locations of air 
quality monitoring stations. This spatial mapping 
enabled an analysis of how traffic impacts PM2.5 
concentrations at a regional level, facilitating 
insights into localized pollution sources and 
allowing for targeted interventions.

Temporal coordination

To ensure compatibility across all datasets, 
traffic data were collected and aligned with 
the temporal resolution of other datasets, 
including satellite and atmospheric data. This 
synchronization ensured consistency in the 
modeling process and allowed for a coherent 
analysis of relationships among the various 
factors influencing PM2.5 levels.

To ensure compatibility across all datasets, 
traffic data were collected and aligned with the 
temporal resolution of other datasets, including 
atmospheric data. This synchronization ensured 
consistency in the modeling process, enabling 
coherent analyses of the relationships among the 
various factors influencing PM2.5 levels.

Normalization and scaling

Normalization was necessary to eliminate unit 
differences among the various features and to 
ensure a balanced contribution to the machine 
learning models. We applied Min-Max scaling 
to criteria such as traffic density and flow, 
transforming the values to a standard range (e.g., 
0 to 1). This step was critical in preventing any 
feature from disproportionately influencing 
model outcomes, thereby enhancing overall 
model performance and stability [22-24].
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Air quality data and meteorological data handling 
and validatio

In addition to the aforementioned techniques, we 
paid careful attention to the handling and validation 
of air quality and meteorological data. The air 
quality data, primarily PM2.5 concentrations, 
were subjected to rigorous quality control. This 
involved identifying and correcting anomalies, 
such as spikes caused by measurement errors or 
equipment malfunctions. Sensor calibration and 
periodic validation against reference data ensured 
the accuracy of these measurements.

Meteorological data were similarly validated 
through comparisons with established weather 
stations in the vicinity. Any discrepancies were 
addressed through adjustment procedures 
based on reliable historical data patterns. We 
implemented cross-validation techniques to 
assess the reliability of the data, allowing us to 
evaluate the consistency and robustness of the 
estimates derived from different processing 
techniques.

Comprehensive documentation of the 
preprocessing steps, including imputation and 
normalization methods, was maintained to ensure 
reproducibility

Prediction models

We structured the dataset to support daily and 
monthly PM2.5 predictions, allowing us to apply 
machine learning, deep learning, and statistical 
models effectively.

Model selection and justification

We explored three modeling approaches to 
capture PM2.5 dynamics:

Statistical model: ARIMA/SARIMA

ARIMA (AutoRegressive Integrated Moving 
Average) and SARIMA (Seasonal ARIMA) 
models are effective for time series forecasting, 

capturing linear trends and seasonality in stable 
datasets ARIMA models the non-seasonal 
Auto Regressive (AR) and Moving Average 
(MA) components, making it adept at handling 
linear trends. SARIMA extends ARIMA by 
incorporating seasonal components, which is 
especially useful for environmental datasets 
exhibiting regular seasonal patterns. 

Machine learning model: XGBoost

We selected XGBoost for its computational 
efficiency and robust performance as an 
intermediate model.

Deep learning model: LSTM

LSTM architecture excels at modeling sequential 
data, making it suitable for capturing the temporal 
dependencies in air quality datasets.

Evaluation metrics

To assess the performance of the models, we 
used Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and Coefficient of 
Determination (R²)  (Eq. 1). These metrics 
allowed for a comprehensive comparison of each 
model's effectiveness in predicting daily and 
monthly PM2.5 levels.

(1)

where:

n=number of observations

y_i=the actual value of i^th  observations

y ̂_i=the predicted value of i^th  observation

y ̅_i=the mean value of all observations

 

RMSE = √((∑_(i=1)^n▒(y_i- (y_i ) ̂ ) )/n) 

R^2=1-  (∑_(i=1)^n▒(y ̂_i- y_i )^2 )/∑_ 

(i=1)^n▒(y_i- y ̅_i ) ^2                               

MAE=  1/n ∑_(i=1)^n▒〖| y_i- y ̂_i  |〗 

 



http://japh.tums.ac.ir

Journal of Air Pollution and Health (Winter 2025); 10(1): 61-82 67

Results and discussion

 

This study evaluated the predictive performance 
of SARIMA/ARIMA, XGBoost, and LSTM 
models across various configurations for 
predicting PM2.5 levels. The primary focus was 
on daily PM2.5 predictions, essential for short-
term air quality management, while monthly 
analyses provided supplementary insights into 
long-term trends. Key performance metrics 
including Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and Coefficient 
of Determination (R²) were utilized to assess 
the accuracy and robustness of each model.

Model performance overview

Meteorological data

ARIMA when using meteorological data alone, 
indicates a high level of predictive accuracy 

Fig. 3. Data preprocessing workflow

(R² = 0.934968). XGBoost achieved the best 
R² score (0.998674), showcasing its robustness 
in capturing patterns in the data (despite higher 
RMSE and MAE compared to ARIMA). LSTM 
produced a less favorable performance than 
ARIMA and XGBoost, suggesting challenges 
in accurately forecasting PM2.5 levels with this 
model when limited to meteorological data 
(Fig. 4).

Impact of cloudiness and traffic data

When additional features, such as cloudiness 
and traffic data, were included, the performance 
of ARIMA and XGBoost significantly 
deteriorated. In contrast, LSTM showed relative 
stability, maintaining a level of performance 
similar to that of the configuration using only 
meteorological data. This indicates that LSTM 
is robust and capable of handling more complex 
data configurations without significantly 
declining prediction quality (Fig. 4).
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A)  Arima model 
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B) XGBoost model
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Fig. 4. Prediction PM2.5 using meteorology data and other features using Arima, XGBosst, and LSTM

C) LSTM model
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Table 1. Model performance on daily PM2.5 prediction across different data configurations

Daily predictions

Table 1 summarizes the performance metrics 
of the ARIMA, XGBoost, and LSTM models 
for daily PM2.5 predictions across different data 
configurations, including meteorological data, 
cloudiness, and traffic data.

Meteorological data

 ARIMA demonstrated exceptionally low RMSE 
(0.004147) and MAE (0.003020), indicating 
high predictive accuracy (R² = 0.934968).
XGBoost achieved the best R² score (0.998674) 
with the same dataset, showcasing strong 
performance in capturing complex patterns 
despite higher RMSE (0.042189) and MAE 
(0.024427).LSTM exhibited less favorable 
performance with significantly higher RMSE 
(2.931065) and MAE (0.624375), highlighting 

challenges in accurately forecasting PM2.5 
levels with solely meteorological data.

Impact of cloudiness and traffic data

When incorporating cloudiness and traffic 
data, Both ARIMA and XGBoost displayed 
considerable deterioration in performance 
when additional features were incorporated.  
ARIMA's RMSE substantially increased 
to 0.269315, and R² dropped to 0.546620, 
suggesting significant challenges with multi-
dimensional datasets. XGBoost's RMSE 
surged to 12.934760, with a decrease in R² 
to 0.795519, indicating reduced predictive 
power. In contrast, LSTM maintained a 
relatively stable performance with RMSE 
values around 2.9 suggesting its robustness in 
handling complex data configurations without 
significant degradation in prediction quality.

 

Model 
Configuration Dataset Frequency RMSE MAE R² 

ARIMA Meteorological 
Data Only 

Daily 0.004147    0.003020    0.934968 

XGBoost Meteorological 
Data Only 

Daily 0.042189 0.024427 0.998674 

LSTM Meteorological 
Data Only 

Daily 2.931065   0.624375   0.986079 

ARIMA Meteorological 
Data + 

Cloudiness  

Daily 0.269315 0.260328 0.546620 

XGBoost Meteorological 
Data + 

Cloudiness  

Daily 12.934760 9.933494 0.795519  

LSTM Meteorological 
Data + 

Cloudiness  

Daily 2.910194 0.587228   0.986276 

ARIMA Meteorological 
Data + Traffic 

Data 

Daily 0.269303 0.260312 0.546662 

XGBoost Meteorological 
Data + Traffic 

Data 

Daily 13.459413 10.183478 0.778645 

LSTM Meteorological 
Data + Traffic 

Data 

Daily 2.918040   0.603696 0.986202 

ARIMA Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 0.269303 0.260312 0.546662 

XGBoost Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 13.459413 10.183478 0.778645  

LSTM Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 2.886912 0.586673   0.986495 
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Table 1. Continued

 

Model 
Configuration Dataset Frequency RMSE MAE R² 

ARIMA Meteorological 
Data Only 

Daily 0.004147    0.003020    0.934968 

XGBoost Meteorological 
Data Only 

Daily 0.042189 0.024427 0.998674 

LSTM Meteorological 
Data Only 

Daily 2.931065   0.624375   0.986079 

ARIMA Meteorological 
Data + 

Cloudiness  

Daily 0.269315 0.260328 0.546620 

XGBoost Meteorological 
Data + 

Cloudiness  

Daily 12.934760 9.933494 0.795519  

LSTM Meteorological 
Data + 

Cloudiness  

Daily 2.910194 0.587228   0.986276 

ARIMA Meteorological 
Data + Traffic 

Data 

Daily 0.269303 0.260312 0.546662 

XGBoost Meteorological 
Data + Traffic 

Data 

Daily 13.459413 10.183478 0.778645 

LSTM Meteorological 
Data + Traffic 

Data 

Daily 2.918040   0.603696 0.986202 

ARIMA Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 0.269303 0.260312 0.546662 

XGBoost Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 13.459413 10.183478 0.778645  

LSTM Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 2.886912 0.586673   0.986495 

 

Model 
Configuration Dataset Frequency RMSE MAE R² 

ARIMA Meteorological 
Data Only 

Daily 0.004147    0.003020    0.934968 

XGBoost Meteorological 
Data Only 

Daily 0.042189 0.024427 0.998674 

LSTM Meteorological 
Data Only 

Daily 2.931065   0.624375   0.986079 

ARIMA Meteorological 
Data + 

Cloudiness  

Daily 0.269315 0.260328 0.546620 

XGBoost Meteorological 
Data + 

Cloudiness  

Daily 12.934760 9.933494 0.795519  

LSTM Meteorological 
Data + 

Cloudiness  

Daily 2.910194 0.587228   0.986276 

ARIMA Meteorological 
Data + Traffic 

Data 

Daily 0.269303 0.260312 0.546662 

XGBoost Meteorological 
Data + Traffic 

Data 

Daily 13.459413 10.183478 0.778645 

LSTM Meteorological 
Data + Traffic 

Data 

Daily 2.918040   0.603696 0.986202 

ARIMA Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 0.269303 0.260312 0.546662 

XGBoost Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 13.459413 10.183478 0.778645  

LSTM Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Daily 2.886912 0.586673   0.986495 

Monthly data

Table 2 outlines the prediction performance for 
monthly PM2.5 levels. Notably, all models faced 
significant challenges when including cloudiness 
and traffic data.

Meteorological data

 The ARIMA model showed poor performance, 
producing negative R² values (-25.019984), 
indicating that using the mean for predictions 
was more effective. Its RMSE and MAE were 
relatively high compared to XGBoost and 
LSTM. XGBoost and LSTM provided low R² 
values (0.767700 and 0.772545, respectively), 

underscoring difficulties in accurately forecasting 
monthly averages.

Impact of cloudiness and traffic data

The inclusion of additional features severely 
impacted all models, with ARIMA yielding a 
negative R² value of -481.007507, indicating poor fit. 
XGBoost, while better than ARIMA, experienced 
declining predictive accuracy, demonstrated by 
its rising RMSE and reducing R² values.LSTM 
also struggled with high RMSE values in monthly 
predictions, indicating that despite its effectiveness 
in daily forecasts, it had difficulty generalizing 
across extended time frames.
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Table 2. Model performance on monthly PM2.5 prediction across different scenarios

Model 
Configuration Dataset Frequency RMSE MAE R² 

ARIMA Meteorological 
Data Only 

Monthly 0.227687 0.223799  -25.019984 

XGBoost Meteorological 
Data Only 

Monthly 0.538045  0.406533 0.767700 

LSTM Meteorological 
Data Only 

Monthly 10.510049   6.375597   0.772545 

ARIMA Meteorological 
Data + 

Cloudiness  

Monthly 29.723305 29.261299 -481.007507 

XGBoost Meteorological 
Data + 

Cloudiness  

Monthly 16.523732 12.568438  0.761846  

LSTM Meteorological 
Data + 

Cloudiness  

Monthly 10.395830   6.135935   0.777462 

ARIMA Meteorological 
Data + Traffic 

Data 

Monthly 29.723305 29.261299 -481.007507 

XGBoost Meteorological 
Data + Traffic 

Data 

Monthly 17.119665 11.915684 0.744358   

LSTM Meteorological 
Data + Traffic 

Data 

Monthly 10.881068   6.628909   0.756203 

ARIMA Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Monthly 29.723305 29.261299 -481.007507 

XGBoost Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Monthly 18.824991  13.902366  0.690892 

LSTM Meteorological 
Data + 

Cloudiness + 
Traffic Data 

Monthly 12.415167   8.579501   0.682611 
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Comparative insights between daily and 
monthly predictions

A distinct dichotomy exists between daily and 
monthly prediction performances. Daily models 
benefited from more straightforward data 
interactions, allowing for effective utilization 
of immediate atmospheric conditions and 
emissions. In contrast, monthly models faced 
increased complexity due to multicollinearity 
and potential overfitting, which impeded their 
predictive accuracy. Moreover, the smoothing 
effect associated with monthly averaging 
diminishes the granularity of data, leading to a 
loss of critical short-term dynamics essential for 
understanding pollution patterns [25, 26].

Model performance

We used the Mann-Whitney method to compare 
between models. The results of the Mann-
Whitney U test and the corresponding Cohen's 
d effect sizes for pairwise comparisons between 
the models (ARIMA, XGBoost, and LSTM) are 
summarized below:

Root mean square error (RMSE)

ARIMA vs XGBoost: p-value = 0.369, Cohen's d 
= -1.97 (Large effect size). Although the p-value 
suggests no statistically significant difference, 
the large negative effect size indicates that 
XGBoost performs substantially better than 
ARIMA in terms of RMSE.

ARIMA vs LSTM

 p-value = 0.077, Cohen's d = -30.57 (Extremely 
large effect size). This comparison indicates that 
LSTM significantly underperforms compared to 
ARIMA for RMSE, as supported by an extremely 
large effect size.

XGBoost vs LSTM: p-value = 0.658, Cohen's d 

= 1.36 (Moderate effect size). While there is no 
statistical significance, the moderate effect size 
suggests that XGBoost outperforms LSTM.

Mean absolute error (MAE)

ARIMA vs XGBoost: p-value = 0.4, Cohen's d 
= -1.95 (Large effect size). Similar to RMSE, 
XGBoost demonstrates a substantial advantage 
over ARIMA, although this p-value does not 
indicate statistical significance.

ARIMA vs LSTM: p-value = 0.1, Cohen's 
d = -4.98 (Extremely large effect size). This 
suggests that LSTM performs significantly 
worse than ARIMA for MAE, as evidenced by a 
considerable effect size.

XGBoost vs LSTM: p-value = 0.7, Cohen's d 
= 1.83 (Moderate effect size). As in previous 
comparisons, while not statistically significant, 
this finding indicates that XGBoost generally 
outperforms LSTM.

Coefficient of determination (R²)

ARIMA vs XGBoost: p-value = 0.369, Cohen's 
d = -1.18 (Moderate effect size). XGBoost 
shows a moderate improvement over ARIMA, 
yet the p-value suggests that this difference is 
not statistically significant.

ARIMA vs LSTM: p-value = 0.077, Cohen's d = 
-2.40 (Large effect size). LSTM's performance is 
notably weaker than that of ARIMA, supported 
by a large effect size.

XGBoost vs LSTM: p-value = 0.658, Cohen's d = 
-1.83 (Moderate effect size). Despite the lack of 
statistical significance, XGBoost's performance 
is moderately better than LSTM.

The analysis reveals that XGBoost generally 
exhibits substantial advantages over ARIMA, 
particularly in terms of RMSE and MAE, 
although the p-values did not reach the 
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conventional threshold of 0.05 for statistical 
significance. Caution should be exercised when 
interpreting these results as definitive. LSTM 
consistently underperforms against both ARIMA 
and XGBoost, as evidenced by very large 
negative effect sizes in most of the comparisons.

Baseline statistical models

In this study, SARIMA/ARIMA served 
as baseline statistical models, providing a 
foundational benchmark for comparing various 
modeling approaches. While these models 
offer interpretability and reliability, they often 
fall short in capturing the complex non-linear 
interactions inherent in environmental data. 
This limitation underscores the necessity for 
employing advanced machine learning and deep 
learning techniques that can enhance air quality 
forecasting capabilities.

Advanced modeling 

Both LSTM and XGBoost emerged as the 
most reliable models, effectively managing the 
complexities of high-dimensional and hybrid 
datasets. This finding aligns with existing 
literature, which shows that deep learning 
and ensemble-based methods consistently 
outperform traditional models in handling 
complex air quality datasets [27, 28].

As an ensemble-based tree method, XGBoost 
excels at capturing intricate interactions 
among input variables, demonstrating robust 
performance in environmental modeling tasks. 
Its ability to process large-scale datasets not 
only ensures computational efficiency but also 
enhances predictive power [29].

In our study, the risk of overfitting was 
a significant consideration, particularly 
concerning the XGBoost model, which 
demonstrated exceptionally high performance 

in daily PM2.5 predictions. To address this risk, 
we implemented several measures throughout 
the modeling process. Firstly, we employed 
K-fold cross-validation techniques to assess 
model performance more reliably.This approach 
not only provides a more accurate estimate of 
model performance but also ensures thorough 
evaluation of the model's ability to generalize.

Secondly, we incorporated regularization 
techniques within the XGBoost framework. 
XGBoost offers parameters for preventing 
overfitting, such as L1 (Lasso regression) 
and L2 (Ridge regression) regularization. By 
tuning these parameters, we penalized model 
complexity, discouraging it from becoming 
overly tailored to the training data.

We also employed early stopping criteria 
during model training. By monitoring model 
performance on a validation dataset at each 
iteration, training can be halted if performance 
begins to degrade, thereby preventing overfitting 
to noise in the training data. This strategy is 
particularly effective for gradient boosting 
algorithms like XGBoost, which can quickly 
overfit if allowed to train for too many iterations.

A critical aspect of our approach involved 
validating the models on independent datasets. 
Whenever possible, we tested the models on 
separate validation datasets not used during 
training. This independent validation confirms 
that results are not merely artifacts of overfitting 
the training data. For instance, we conducted 
temporal validation by splitting the data into 
training and testing periods based on time, 
simulating real-world scenarios where future 
predictions rely on past data.

Additionally, we examined model performance 
across various configurations and assessed 
the spread of performance metrics to identify 
potential signs of overfitting. By comparing 
model performance between training and test 
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sets, we looked for significant discrepancies 
indicative of overfitting.

Daily forecasting models

The evaluation of daily PM2.5 predictions 
revealed that ARIMA demonstrated 
commendable accuracy when relying solely 
on meteorological data. This ability suggests 
that ARIMA can effectively capture the linear 
relationships present in environmental data. 
However, XGBoost outperformed all models, 
showcasing its strength in modeling complex, 
non-linear interactions despite exhibiting higher 
RMSE and MAE values. The higher RMSE 
associated with XGBoost indicates that while 
the model can capture intricate patterns, it is 
also more sensitive to outliers and variability in 
the data.

Models like XGBoost are particularly well-suited 
for real-time daily forecasting, demonstrating 
strong performance under varying conditions. 
Their adaptability to changing data environments 
facilitates effective pattern recognition, enabling 
timely interventions in air quality management. 
The gradient-boosting framework of XGBoost 
combines multiple weak learners into a robust 
predictive model, enhancing accuracy and 
minimizing overfitting when properly tuned 
[30]. Previous studies have corroborated that 
XGBoost excels in daily PM2.5 forecasting due 
to its ability to manage non-linear relationships 
effectively [30, 31].

In contrast to its strong performance in 
daily forecasting, LSTM exhibited limited 
effectiveness when reliant solely on 
meteorological data. This is evident from its 
higher RMSE, likely stemming from LSTM's 
dependence on historical sequential patterns, 
which may not be adequately captured with a 
smaller set of input features. These challenges 
underline the limitations that arise for LSTM 
when constrained to linear predictors in 

forecasting PM2.5 levels.

Monthly forecasting models

All models encountered challenges in monthly 
predictions, particularly in configurations that 
combined multiple features. While XGBoost 
excelled in daily predictions, its performance 
declined significantly when applied to monthly 
data, especially with combined features. The 
negative R² values observed in ARIMA’s 
monthly predictions highlight significant 
inadequacies within this model raising critical 
questions about its applicability for long-term 
forecasts in this context. 

Several factors may contribute to ARIMA's poor 
performance. Firstly, ARIMA and SARIMA 
models rely on the assumptions of stationarity 
in time series data. The non-stationarity of PM2.5 
data—characterized by trends and seasonal 
fluctuations—can lead to the model fitting poorly. 
If the time series exhibits strong seasonality or 
trends that are not adequately addressed, the 
forecasts may be biased or ineffective.

Secondly, ARIMA models primarily capture 
linear relationships in data. The environmental 
factors influencing PM2.5 levels often involve 
complex, non-linear interactions among 
variables (e.g., meteorological conditions, 
traffic volumes, and geographical influences). 
Thus, the linear nature of ARIMA may struggle 
to adequately model these intricate relationships.

Additionally, the effects of data aggregation 
must be considered. Monthly averaging of 
PM2.5 data could diminish granularity, causing 
important short-term variations and events (like 
pollution spikes) to be masked. This averaging 
smooths out fluctuations, potentially leading 
to inaccuracies in capturing the underlying 
dynamics when using just meteorological data 
for prediction.

Moreover, the exclusion of significant predictive 
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variables, such as traffic emissions and seasonal 
indicators, from the ARIMA model adversely 
affects its predictive accuracy. These factors are 
particularly impactful over extended time frames 
and can drive variations in PM2.5 concentrations.

To improve the situation, several strategies could 
be employed. Utilizing seasonal differencing or 
transformations before fitting the ARIMA model 
can help in removing seasonal effects. Enhancing 
the model structure to incorporate seasonal 
patterns with SARIMA can be beneficial.

Exploring hybrid models that combine ARIMA 
with machine learning or advanced statistical 
methods could potentially improve predictions. 
For example, a hybrid model could leverage 
ARIMA for capturing trends and seasonality, 
while utilizing machine learning techniques for 
capturing non-linear relationships (e.g., ARIMA 
+ XGBoost).

Incorporating additional relevant predictors 
beyond meteorological data is equally crucial. 
Future modeling efforts should consider factors 
like traffic patterns, economic indicators, 
industrial emissions, or indices representing 
societal behaviors that impact pollution levels.

Moreover, evaluating alternative models can 
lead to better outcomes. Generalized Additive 
Models (GAMs) can effectively handle non-
linear relationships and include multiple 
predictors while maintaining interpretability. 
Random Forest or Gradient Boosting methods 
can manage high-dimensional data and capture 
non-linearities effectively while reducing the 
risk of overfitting through systematic techniques.

Also, for monthly forecasting, alternative 
modeling approaches should be adopted, focusing 
on capturing longer-term trends while avoiding 
excessive variable inclusion. Techniques 
such as dimensionality reduction and feature 
selection are essential for enhancing predictive 
performance by minimizing multicollinearity 

among variables. Research has proposed hybrid 
models, such as the Weighted LSTM Neural 
Network (WLSTME), which integrate auxiliary 
meteorological data with historical PM2.5 
concentrations to effectively simulate spatial 
dependencies alongside temporal factors [32].

Limitations of models

The introduction of additional features, such 
as cloudiness and traffic data, led to significant 
performance declines for both ARIMA and 
XGBoost. This suggests that these models 
struggled to manage the increased noise in the 
data without sacrificing predictive power. For 
ARIMA, this deterioration indicates a loss of 
predictive accuracy when dealing with multi-
dimensional datasets. In contrast, while LSTM 
networks exhibited consistent performance 
across various configurations, their efficacy 
diminished in monthly predictions. The 
temporal nature of meteorological data requires 
careful consideration of time lags and seasonal 
effects, which complicates the learning process 
for LSTM models, especially in non-stationary 
time series contexts [33].

However, LSTM demonstrated remarkable 
resilience by maintaining stable performance 
even with the added complexity, highlighting 
its robustness in scenarios involving multi-
dimensional datasets—an area where traditional 
linear models may falter. For example, 
researchers showed that cloudiness can correlate 
with humidity and other weather-related 
variables, complicating analyses and potentially 
degrading prediction accuracy [29]. 

The introduction of additional features such as 
traffic and cloudiness data into the predictive 
models, specifically XGBoost and LSTM, has 
significant implications for model performance. 
While these features are essential for capturing 
the multifaceted nature of PM2.5 dynamics, their 
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complexity can also impose challenges.

The complexity added by traffic data 
significantly affects both the XGBoost and 
LSTM models. Traffic patterns directly correlate 
with pollutant emissions, as vehicle movement 
contributes substantially to PM2.5 levels in urban 
environments. However, the inclusion of traffic 
volume data can introduce collinearity among 
predictors, particularly if traffic data correlates 
with other meteorological variables such as 
wind speed and humidity. This collinearity 
may lead to model instability and can distort 
the understanding of the individual feature's 
contribution to the predictions.

Moreover, traffic data often have daily patterns 
that may not align well with the temporal 
resolutions used in the models. For instance, 
while certain features may fluctuate throughout 
the day (e.g., traffic volumes), the model may 
not effectively capture these dynamics if the 
temporal resolution is inconsistent. This can lead 
to a misrepresentation of the relationship between 
traffic volumes and PM2.5 concentrations, 
ultimately diminishing predictive performance.

Similarly, cloudiness data adds complexity due 
to its potential nonlinear impacts. Cloud cover 
influences both temperature and solar radiation, 
which in turn can affect PM2.5 dispersion and 
formation. However, the relationship is complex; 
for example, increased cloudiness can limit 
solar radiation, potentially leading to increased 
PM2.5 accumulation in certain conditions, 
while also possibly reducing it under different 
meteorological contexts. These interactions 
may not be adequately captured by the models, 
leading to potential inaccuracies in predictions.

To mitigate the negative impacts of these 
complexities, several strategies can be 
employed. Firstly, conducting Exploratory Data 
Analysis (EDA) to understand the relationships 
among features before model fitting is crucial. 
Correlation matrices and scatter plots can help 

identify potential collinearity and interactions.

Future research directions

The divergence in model performance between 
daily and monthly predictions emphasizes the 
complexities inherent in time series forecasting 
for environmental data. Recognizing the 
intricate data interactions and employing 
appropriate modeling strategies are vital for 
capturing underlying patterns necessary for 
accurate forecasts.

Future research should explore hybrid models 
that combine strengths from various techniques, 
such as using XGBoost for feature extraction 
followed by LSTM for time series predictions. 
Additionally, expanding datasets to include 
more environmental and anthropogenic 
variables may enhance predictive accuracy and 
robustness, especially in monthly forecasting 
contexts. Integrating traffic data to account 
for daily variability while ensuring a greater 
focus on meteorological variables for seasonal 
modeling is also a promising avenue for 
advancement. The dynamics of PM2.5 levels 
are influenced by a multitude of external 
factors beyond meteorological conditions. A 
comprehensive understanding of air quality 
requires consideration of economic activities 
and seasonal variations, as these aspects are 
integral to the variability of PM2.5 concentrations 
in urban environments.

Economic activities play a significant role in 
air pollution levels. For instance, industrial 
emissions contribute notably to PM2.5 
concentrations. The type and scale of industrial 
operations in Tehran, including manufacturing, 
construction, and energy production, directly 
affect the volume of particulate matter released 
into the atmosphere. Additionally, economic 
growth and increased consumer activity lead 
to higher levels of vehicular traffic, which 
is another major source of PM2.5. Elevated 
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traffic during peak hours can exacerbate air 
quality issues, particularly in urban centers. 
Therefore, incorporating economic indicators 
such as industrial output, traffic volume, and 
fuel consumption into predictive models could 
improve their accuracy and relevance.

Seasonal variations also play a critical role in 
shaping PM2.5 levels. Different seasons in Tehran 
result in varying meteorological conditions that 
influence air quality. For example, temperature 
inversions during the winter months can trap 
pollutants close to the ground, leading to higher 
PM2.5 concentrations than during warmer seasons 
when atmospheric mixing is more vigorous. 
Furthermore, certain environmental phenomena, 
such as dust storms prevalent in spring and 
summer, can lead to spikes in PM2.5 levels that 
are not adequately captured by meteorological 
data alone. Future research should consider the 
impact of these two key factors in their models.

Conclusion

The observed dichotomy in model performance 
between daily and monthly PM2.5 predictions 
emphasizes the critical importance of 
understanding data characteristics and dynamics. 
This study highlights that adapting modeling 
approaches based on these differences is essential 
for improving forecasting accuracy, which in 
turn enhances decision-making processes related 
to air quality management and mitigates health 
risks associated with PM2.5 exposure. Analysis 
results reveal notable strengths and weaknesses 
across the three models evaluated. XGBoost 
emerged as the superior model for daily 
predictions with meteorological data, effectively 
capturing short-term variability. However, the 
significant decline in predictive performance 
when additional features were included 
underscores the necessity of careful feature 
selection for achieving accurate modeling. In 

contrast, while LSTM demonstrated robustness 
across varying configurations, its challenges 
with monthly predictions illustrate limitations 
in long-term forecasting unless underpinned by 
comprehensive data strategies. Moreover, the 
negative R² values obtained from ARIMA during 
monthly predictions point to the necessity for 
more sophisticated approaches that can address 
both the temporal complexities inherent in PM2.5 
data and the intricate interactions among various 
influencing factors.

To advance this field, future research should 
explore the integration of hybrid models 
that amalgamate strengths from various 
methodologies, thereby enhancing accuracy 
and mitigating overfitting risks. Additionally, 
focused efforts on expanding datasets to include 
a wider range of environmental variables could 
further bolster model robustness and elevate 
forecasting capabilities within the context of air 
quality prediction.
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