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ABSTRACT

Introduction: Air pollution is a significant global health challenge, 
contributing to the deaths of millions of people annually. Among these 
pollutants, Particulate Matter (PM2.5) is the most harmful to the respiratory 
system causing serious health problems. This study focused on predicting 
PM2.5 in the air of Islamabad, capital of Pakistan by using machine learning 
and deep learning models.  
Materials and methods: Two machine learning models (Decision Tree and 
Random Forest) and four deep learning models including Multi-Layer Neural 
Network (MLNN), Long Short-Term Memory (LSTM), Recurrent Neural 
Network (RNN), Gated Recurrent Unit (GRU) are used in the study. Each 
model's performance was assessed by using statistical indicators including 
coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and Relative Root Mean Square Error (RRMSE). 
These models are also ranked based on their performance by compromise 
programming technique.
Results: Machine learning models performed better in the training phase 
by achieving higher R2 values of 0.98 and 0.97 but couldn’t maintain the 
same performance in the testing phase. Whereas the deep learning models 
performed best in both the training and testing phases. MLNN model attained 
higher R2 value of 0.98 in training and 0.88 in testing and is evaluated as 
top-ranked prediction model in predicting particulate matter PM2.5. Whereas, 
LSTM, GRU, RNN, Decision Tree, and Random Forest are placed at the 2nd, 
3rd, 4th, 5th, and 6th positions having R2 values of 0.86, 0.87, 0.82, 0.99, and 
0.97 during training and 0.71, 0.69, 0.69, 0.75, and 0.85 respectively during 
testing.
Conclusion: Deep learning models, especially MLNN, showed strong 
performance in predicting PM2.5 as compared to the machine learning models. 
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Introduction 

Air quality has become a pressing global 
concern due to its significant impact on 
human health, ecosystems, and economies [1]. 
The degradation of air quality, particularly 
in urbanized and industrialized regions, has 
reached alarming levels. Multiple factors, 
including rapid population growth, increased 
combustion of fossil fuels, vehicular 
emissions, and the expansion of industrial 
activities, drive this decline [2]. Among the 
various air pollutants, particulate matter with 
an aerodynamic diameter of less than 2.5 µm 
Particulate Matter (PM2.5) has emerged as the 
most hazardous to human health. Due to its 
microscopic size, PM2.5 can penetrate deep into 
the respiratory tract, enter the bloodstream, 
and exert systemic effects on vital organs. 
Exposure to elevated concentrations of PM2.5 
has been strongly associated with respiratory 
illnesses such as asthma and Chronic 
Obstructive Pulmonary Disease (COPD), 
cardiovascular disorders like hypertension 
and heart attacks, reduced life expectancy, and 
increased morbidity and mortality rates [3]. 
According to the World Health Organization 
(2021), air pollution contributes to over 
seven million premature deaths annually, 
underscoring the urgent need for effective air 
quality management strategies [4]. Beyond its 
adverse health effects, PM2.5 also contributes to 
reduced visibility, environmental degradation, 
and climate change, further emphasizing the 
necessity of robust monitoring and forecasting 
systems.

In recent years, substantial efforts have been 
devoted to understanding the dynamics of air 
pollutants and improving prediction systems. 
Traditional air quality forecasting methods, 
such as regression models, time-series analysis, 
and Chemical Transport Models (CTMs), 
have been widely utilized to predict pollutant 

concentrations and evaluate emission reduction 
policies [5]. However, these approaches 
often exhibit limitations, particularly when 
addressing nonlinear, high-dimensional 
interactions among meteorological factors, 
emission sources, and atmospheric processes 
[6]. Additionally, CTMs are computationally 
expensive and require extensive domain 
expertise, which limits their scalability for 
real-time and region-specific applications [7].

The emergence of Machine Learning (ML) and 
Deep Learning (DL) techniques has transformed 
the landscape of air quality prediction. ML 
models such as Random Forest (RF), Gradient 
Boosting Machines (GBM), and Support 
Vector Machines (SVM) have demonstrated 
strong predictive capabilities, particularly in 
capturing spatial and temporal variations in air 
quality data [8]. Meanwhile, DL models like 
Long Short-Term Memory (LSTM) networks 
and Convolutional Neural Networks (CNNs) 
have proven effective in handling sequential 
and spatial data, respectively. For instance, 
LSTM networks excel in modeling temporal 
dependencies inherent in time-series data, 
whereas CNNs are adept at extracting spatial 
patterns from satellite imagery or geographic 
datasets [9]. Hybrid models combining ML and 
DL approaches have also shown promise in 
improving forecasting accuracy by leveraging 
the strengths of both paradigms [10].

Several studies have highlighted the 
effectiveness of ML and DL models in 
air quality prediction. For example, [9] 
applied GCN and E-LSTM to predict PM2.5 
concentrations, demonstrating their robustness 
in capturing nonlinear relationships between 
predictor variables. Similarly, [11] explored 
the application of LSTM models for time-
series PM2.5 forecasting, achieving superior 
performance compared to traditional statistical 
methods. Despite these advancements, critical 
gaps remain in existing literature. Most studies 
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focus on regions with extensive air quality 
monitoring networks, such as North America, 
Europe, and China, while neglecting Low- and 
Middle-Income Countries (LMICs), where 
air quality data are sparse or inconsistent 
[12, 13]. Additionally, limited research has 
conducted systematic comparative analyses 
of ML and DL models under varying data 
conditions, particularly in resource-constrained 
environments like Pakistan.

Islamabad, the capital of Pakistan, presents 
a unique case for air quality research. While 
often perceived as having relatively better 
air quality than other major cities, the city is 
increasingly impacted by PM2.5 pollution due 
to rapid urbanization, vehicular emissions, 
and its proximity to industrial zones. Yet, the 
scarcity of high-quality, long-term air quality 
data poses significant challenges for effective 
monitoring and forecasting. Addressing this 
gap requires innovative solutions, including 
the integration of ML and DL models, the 
application of data augmentation techniques, 
and the use of transfer learning to leverage data 
from better-monitored regions [6]. 

Moreover, while studies have begun exploring 
advanced techniques like explainable AI 
(XAI), attention mechanisms, and hybrid 
ML-DL architectures, their application to 
PM2.5 prediction remains limited [14]. These 
methods hold great promises for improving 
model interpretability, addressing data scarcity, 
and enhancing predictive accuracy, especially 
in underrepresented regions. Finally, many 
studies adopting hybrid ML-DL approaches 
fail to provide a clear rationale for their 
integration, limiting the practical relevance 
and generalizability of their findings [10].

This study seeks to address these gaps by 
conducting a comprehensive comparative 
analysis of ML and DL models for PM2.5 
prediction in Islamabad, Pakistan. The research 
evaluates the performance of ML models such 

as RF and GBM alongside DL architectures like 
LSTM and CNN, focusing on their effectiveness 
under varying data conditions. Additionally, 
the study explores innovative techniques like 
transfer learning and data augmentation to 
overcome data limitations and investigates 
the potential of hybrid ML-DL approaches for 
improving prediction accuracy. By addressing 
these challenges, this study contributes to the 
development of robust, accurate, and scalable 
air quality forecasting systems tailored to the 
unique needs of LMICs.

The novelty of this research lies in its dual 
focus: first, advancing the application of ML 
and DL models for air quality prediction in 
data-scarce regions, and second, exploring 
innovative solutions to overcome challenges 
posed by limited data availability. The findings 
are expected to provide valuable insights for 
policymakers, urban planners, and public 
health officials, supporting the development 
of evidence-based strategies for air pollution 
mitigation in Islamabad and similar urban 
settings.

 
Study area

Islamabad is one of the major cities and capital 
of Pakistan that is located between the latitude 
of 33.6844° North and a longitude of 73.0479° 
East as shown in Fig. 1. It is in the northern 
part of Pakistan, nestled at the foothills of 
Margalla Hills. It is in the Islamabad Capital 
Territory (ICT), which shares borders with the 
Khyber Pakhtunkhwa and Punjab provinces of 
Pakistan. It is the country's 9th most populated 
city, having a population of approximately 1.2 
million. It is divided into eight different phases 
based on planning by the Greek architect 
Constantinos Apostolou Doxiadis. The area 
was chosen for the study due to its beauty, as it 
is one of the most beautiful cities in South Asia 
facing air pollution challenges. 
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Fig. 1. Location map of study area Islamabad, Pakistan

Materials and methods

The collected air quality data was divided into 
training and testing and then analyzed by using 
different machine learning models. The step-
by-step procedure of this study is visualized in 
the given Fig. 2.

Data collection

The daily air quality data ranges from 1 January 

2018 to 31 August 2023 of Islamabad was 
collected from the Environmental Protection 
Agency (EPA). It consisted of NO2, SO2, 
humidity, temperature, and (Particulate matter) 
PM2.5 as shown in Fig. 3. These parameters 
play a vital role in air quality. Temperature 
and Humidity affect the pollution spreading 
and chemical reactions. NO2 and SO2 are the 
primary sources of pollution that contribute to 
secondary pollution formation. PM2.5 is riskier 
and responsible for mortality risks. 



http://japh.tums.ac.ir

Journal of Air Pollution and Health (Winter 2025); 10(1): 37-60 41

Fig. 2. Graphical representation of methodology
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Fig. 3. Collected data containing air quality parameters

Feature engineering and selection

Feature engineering is a process used to evaluate 
and extract the importance of each feature in 
predicting a target variable. By identifying the 
most relevant features, this process enhances 
the performance and predictive ability of 
machine learning models. In this study, we 
employed the Random Forest model to assess 
the importance of each feature for predicting 
PM2.5 concentrations. The model quantified 

the contribution of each feature, and based on 
these importance scores, we selected the most 
impactful features while excluding those with 
low relevance. The feature importance values 
are summarized in Table 1, with humidity being 
excluded due to its low contribution to model 
performance. Additionally, statistical analyses, 
including feature correlation, further support 
this decision by showing minimal impact of 
humidity on the model’s predictive ability.
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Methods 

The features for analysis were selected based on 
feature engineering. The feature importance of 
Humidity was found to be very low compared 
to other features; therefore, it was excluded 
from the analysis. The remaining features, 
including SO2, NO2, and temperature, were used 
as inputs for predicting PM2.5. The collected 
data, excluding Humidity, was divided into 
two sets: training (80%) and testing (20%). 
The training data was used to train the models, 
while the testing data was used to assess their 
performance. All the models were equally 
optimized using a trial-and-error method. The 
following six models were used to predict PM2.5 
in the air of Islamabad.

Decision tree model

Decision Tree is one of the most powerful 
supervised machine-learning techniques used 
for both regression and classification analysis. 
It has a flow chart-like tree structure consisting 
of root nodes, internal nodes, branches, and 
leaf nodes. The internal nodes have other child 

nodes consisting of terms and conditions. These 
nodes are used to divide the data into subsets 
to provide further decisions. In comparison, 
the leaf nodes provide the results in the form 
of decisions. The general architecture of the 
Decision Tree Model is shown in Fig. 4.

In this study, to implement a Decision Tree 
Regressor a Python code was developed using 
sci-kit-learn for a regression task. It begins by 
splitting the dataset into training and testing 
sets with a 70-30 ratio, ensuring reproducibility 
through a fixed random state. A Decision Tree 
Regressor is instantiated without specifying 
additional parameters, and the random state 
is set to ensure consistent results across runs. 
The model is then trained using the training 
dataset (x_train, y_train), where it learns the 
underlying patterns in the data. After training, 
predictions are made on both the testing set (x_
test) and the training set (x_train) to evaluate 
the model's performance. This approach allows 
for an assessment of how well the model 
generalizes to unseen data and how it performs 
on the training data, providing insights into 
potential overfitting or underfitting issues.

Table 1. Quantitative importance of different features for prediction of PM2.5

Feature Engineering 

 
Name Feature Importance values Position of Features  

Temperature 0.462086 1  

SO2 0.270166 2  

NO2 0.181008 3  

Humidity 0.08674 4  
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Fig. 4. The general architecture of the decision tree model

Random forest regression

Random Forest Regression combines predictions 
of multiple decision trees to avoid overfitting and 
provide accurate results. The model depends on 
two main parameters including several predictors 
and many grown trees. In 1st stage, the model 
begins with several trees and then it provides a 
classification tree for each predictor, randomly. 
During predictions, the results of all the decision 
trees in the forest are averaged to obtain accuracy. 
During the growing tree process, this model uses 
extra randomness instead of searching for the 
best feature among the random subset of features. 
It gains higher bias for lower variance yielding 
generally a better result. In the case of regression, 
it mainly depends on the average results of all 
trees in the model. Mathematically it can be 
shown as:

(1)

ý = final prediction of RF model for an input x.

T = number of decision trees in the forest.

ýt (x) = prediction from t-th trees for an input x.

By using different inputs, the model creates a 
decision tree for each input representing possible 
outcomes. Then for each input, it provides a 
prediction ýt (x). The final prediction ý is the 
average of all the predictions from T-trees. The 
general architectural view of the whole process is 
illustrated in Fig. 5.

In this study, python code was developed to 
implement a Random Forest Regressor for 
regression using sci-kit-learn, designed to predict 
target values based on input features. It begins 
by splitting the dataset into training and testing 
sets in an 80-20 ratio, ensuring reproducibility 
with a fixed random state. The Random Forest 
Regressor is initialized with 2000 decision trees 
and uses the mean squared error as the criterion 
for evaluating split quality. The model is then 
trained on the training dataset, learning patterns, 
and relationships between the features and target 
values. After training, predictions are made 
on both the training and testing sets to assess 
the model’s performance. The high number of 
estimators improves accuracy but also increases 
computational requirements, demonstrating 
a balance between achieving high predictive 
accuracy and managing computational resources.

ý = 1
𝑇𝑇 (∑ ý𝑡𝑡(𝑥𝑥)𝑇𝑇

𝑡𝑡=1                 (1 
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Fig. 5. Random forest model architecture 

Recurrent neural network (RNN)

RNN is a type of Artificial Neural Network 
(ANN) having an input layer, hidden layers, 
and output layers. The hidden layers extract 
information from the previous points in a 
sequence, that is why it is well-suited for the 
time series data. It processes the data as a cycle 
by maintaining the memory of previous inputs. 
This is mainly used for speech recognition, 
natural language processing, etc. In the 1st 

phase of analysis, the input data is used for 
prediction in the model, then it moves toward 
hidden state analysis [15]. In the hidden state, 
a hidden layer of neural networks is used to 

capture the data accurately and then provide it 
as output. The architecture of RNN is shown in 
Fig. 6. Mathematical computation output from 
the RNN model is:

(2)

yt = output of the model.

g = activation function of the model.

Why = Weight function for the hidden state to 
output.

by = bias term of the model.

Similarly, the mathematical equation for its 

𝑦𝑦𝑡𝑡 = 𝑔𝑔(𝑊𝑊ℎ𝑦𝑦𝑏𝑏𝑡𝑡 + 𝑏𝑏𝑦𝑦)                  (1) 
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hidden states is given by.

(3)

Wxt = Transformation of current input xt.

Uht-1 = Transformation of the previous hidden 
state ht-1.

bh  = Bias vector for the hidden state.

σ = Activation function (ReLU function).

Its architecture is shown in Fig. 6.

In this research, python code was developed to 
implement RNN using TensorFlow and Keras 
for a regression task, with a focus on time-series 
or sequential data. It begins by normalizing the 
output (`y`) using `MinMaxScaler` to scale 
values between 0 and 1, ensuring consistent 

output ranges for efficient learning. The 
dataset is then split into training and testing 
sets with an 80-20 ratio, using a fixed random 
state for reproducibility. The input features 
(`X`) are standardized using `StandardScaler` 
to achieve a mean of 0 and a standard deviation 
of 1, which is crucial for enhancing the model's 
performance. The standardized data is reshaped 
into a 3D array (`samples, time steps, features`) 
suitable for RNN input. The RNN model is built 
with a single Simple RNN layer containing 50 
units and using the sigmoid activation function, 
followed by a dense layer with a single 
neuron for the regression output. The model is 
compiled using the Adam optimizer and mean 
squared error (MSE) as the loss function. It is 
trained for 300 epochs with a batch size of 64, 
optimizing the model’s parameters to minimize 
prediction errors.

ℎ𝑡𝑡 =  𝜎𝜎(𝑊𝑊xt + 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏ℎ)          

Fig. 6. Illustrates the architecture of the RNN model
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Long short-term memory (LSTM)

LSTM is an improved version of the RNN 
model having the ability to capture long-
term dependencies in sequential data. It is 
well-suited for sequential data. It has three 
gates including the input gate, forget gate, 
and output gate. The input gate controls the 
information added to the memory cell, the 
output gate controls the output information 
from the memory cell while the forget gate 
controls the information that is no longer 
useful in the memory cell. The algorithm 
not only uses current input but also keeps 
the previous results in memory. Fig. 7 shows 
the architecture of the LSTM model. The 
mathematical expression is divided into 3 
parts including input gate, forget gate, and 
output gate. 

Input gate [16]:

(4)

Wi = weight matrix for the input gate.

bi = bias term for input gate.

Forget gate:

(5)

Wf = weight matrix of forget gate.

bf = bias term for forget gate.

σ = activation function for forgetting gate.

The mathematical equation for the last stage 
of the output gate is.

(6)

Wo = Matric weight for its output gate.

bo = bias term for output gate.

σ = activation function for output gate.

In this study, Python code was constructed 
for Long Short-Term Memory (LSTM) neural 
network development for a regression task 
using TensorFlow and Keras library. It starts 
by normalizing the target variable (y) with 
MinMaxScaler to fit it within a 0-1 range, 
essential for consistent and effective learning. 
The data is split into training and testing sets 
with 70% for training and 30% for testing, 
ensuring reproducibility with a fixed random 
state. The input features (X) are standardized 
using Standard Scaler to have a mean of 0 
and a standard deviation of 1, enhancing 
model performance. The input data is then 
reshaped to a 3D format (samples, time steps, 
features), suitable for LSTM networks that 
require sequential input. The LSTM model 
is constructed with 60 units and a ReLU 
activation function, followed by a dense layer 
with a single neuron for regression output. 
Compiled using the Adam optimizer and Mean 
Squared Error (MSE) loss function, the model 
is trained for 3000 epochs with a batch size 
of 16, optimizing the weights to improve the 
model's predictive accuracy.

𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)          
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)     

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)    
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Fig. 7. Illustrates the architecture of the LSTM model

Gated recurrent unit (GRU) 

GRU is also a type of RNN model that is an 
alternative to the LSTM model and can be used 
for text, speech, and time series data just like 
LSTM. It is different from LSTM due to its gated 
mechanism. It has two gates, a reset gate and an 
update gate. The reset gate is used to control the 
amount of information that should be forgotten 
while the update gate is used to control the newly 
added information for updating the hidden state of 
the model. The architecture of the GRU model is 
illustrated in Fig. 8. Mathematically updated gate 
can be expressed as:

(7) [17]

Wzxt = transformation of the current input xt.

Uzht-1= transformation of the previously hidden 
state ht-1. 

bz = bias vector for the update gate.

σ = activation function.

Reset gate:

(8)

ht-1 = hidden state vector from the previous state.

Wr = weight of input matrix.

br = bias vector for reset gate.

In this study, python code was constructed to train 
a Simple RNN using TensorFlow and Keras for 
a regression problem. It begins by normalizing 
the output data (`y`) with `MinMaxScaler`, 
transforming it into a range between 0 and 1 for 
better performance during training. The dataset is 
split into training and testing sets in an 80-20 ratio, 
with a fixed random state to ensure reproducibility. 
The input features (`X`) are then standardized 
using `StandardScaler`, which adjusts the data to 
have a mean of 0 and a standard deviation of 1, 
facilitating faster convergence during training. The 
standardized input is reshaped into a 3D array to 
conform to the RNN input requirements, specifying 
dimensions for samples, time steps, and features. A 
Simple RNN model is constructed with 600 units 
and a ReLU activation function, followed by a 
dense layer with a single neuron for the regression 
output. The model is compiled using the Adam 
optimizer and mean squared error (MSE) as the 
loss function. It is trained for 10,000 epochs with a 
batch size of 128, optimizing the network's weights 
to minimize prediction errors and enhance its 
predictive capabilities.

𝑧𝑧𝑡𝑡 =  𝜎𝜎(𝑊𝑊z𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧)            

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟)            



http://japh.tums.ac.ir

Journal of Air Pollution and Health (Winter 2025); 10(1): 37-60 49

Fig. 8. Illustrate the architecture of the GRU model

Multi-Layer neural network

MLNN is also known as Multi-Layer Perception 
(MLP) and is commonly used for continuous data 
patterns. It is a typical example of a feedforward 
neural network and consists of input, hidden, 
and output layers. The input layer has nodes or 
neurons having features and dimensions. The 
input neurons may be different depending on 
the number of inputs. Similarly, the number of 
neurons in the output may be single or multiple. 
A backpropagation algorithm trains the model. 
Fig. 9 explains the architecture of the MLNN 
model. Mathematically it is divided into two 
parts, hidden state and output state [18]. 

Hidden state

(9)

(10)

W(I) = weight matrix for layer I.

a(I-1) = activation output from the previous layer.

b(I) = bias vector for layer I.

f = activation function (Relu).

z(I) = weighted input to layer I.

Output Layer:

 
𝑧𝑧(𝐼𝐼) = 𝑊𝑊(𝐼𝐼)𝑎𝑎(𝐼𝐼−1) + 𝑏𝑏(𝐼𝐼)                    

 
 

𝑎𝑎(𝐼𝐼) = 𝑓𝑓(𝑧𝑧(𝐼𝐼))                                    
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(11)

(12)

W(L) = weight matrix for the output layer.

a(I-1) = activation output from the last hidden layer.

b(I) = bias vector for the output layer.

f = activation function (Relu).

z(I) = weighted input to output.

In this study, the output data (y) data was 
normalized using MinMaxScaler and then the 

dataset was split into training and testing sets 
to ensure reproducibility. The input features 
(X) are standardized with StandardScaler to 
maintain consistent feature scaling, crucial for 
efficient model training. The MLNN model is 
then built with three hidden layers (128, 64, 
and 32 neurons) using the ReLU activation 
function, and a single neuron in the output 
layer for the regression output. Compiled with 
the Adam optimizer and Mean Squared Error 
(MSE) as the loss function, the model is trained 
for 7000 epochs with a size of 64, optimizing 
its parameters to minimize prediction error and 
improve accuracy.

Fig. 9. Illustrate the architecture of the MLNN model

 
 

𝑧𝑧(𝐿𝐿) = 𝑊𝑊(𝐿𝐿)𝑎𝑎(𝐿𝐿−1) + 𝑏𝑏(𝐿𝐿)             
 

 

 
 
 

𝑎𝑎(𝐿𝐿) = 𝑓𝑓(𝑧𝑧(𝐿𝐿))                        
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Model performance indicators

Four statistical indicators including R-square, 
Root Mean Square Error (RMSE), Relative 
Root Mean Square Error (RRMSE) and Mean 
Absolute Error (MAE) are used to assess the 
performance of these models. These indicators 
made it easy to decide which model is best. 

Coefficient of determination (R2)

R² measures how well the model's predictions 
match the actual observed values, ranging 
from 0 to 1, where a value closer to 1 indicates 
better prediction accuracy. This helps in 
understanding how well the model captures the 
underlying patterns in the data. In the context 
of PM2.5 prediction, a high R² indicates that the 
model can accurately predict air quality levels 
based on input features, which is crucial for 
environmental monitoring and decision-making. 
Mathematically R2 can be expressed as

(13)

Here yi = Observed value of the target variable.

ýi = predicted value of the target variable.

ym = mean value of the target variable.

Root mean square error (RMSE)

RMSE is a common measure used to evaluate 
the difference between observed and predicted 
values. It has the advantage of penalizing larger 
errors, which is important in applications like 
air quality prediction, where large deviations 
from the true value could have significant 
consequences. RMSE gives an intuitive measure 
of prediction accuracy in the same units as 
the target variable (PM2.5 concentration), 
making it easy to interpret for policymakers 
and environmental agencies. A mathematical 
equation for finding RMSE is shown.

(14)

yi = Observed value of the target variable.

ýi = predicted value of the target variable.

Relative root mean square error (RRMSE) 

RRMSE normalizes RMSE by the range of 
observed values, making it easier to compare 
model performance across different datasets. 
For PM2.5 prediction, RRMSE helps assess the 
model's ability to generalize across various 
pollution levels, which is important in regions 
with fluctuating air quality. This can be 
calculated by:

(15)

yi = Observed value of the target variable.

ýi = predicted value of the target variable.

ymax = maximum value of the target variable.

ymin = minimum value of the target variable.

Mean absolute error (MAE)

MAE measures the average absolute difference 
between observed and predicted values. Unlike 
RMSE, it does not penalize large errors as 
heavily, but it provides a straightforward 
interpretation of prediction accuracy. MAE 
is particularly useful for understanding the 
magnitude of typical prediction errors, helping 
to quantify how close the predicted PM2.5 values 
are to actual observed levels. The mathematical 
equation for MAE is given as:

(16)

yi = Observed value of the target variable.

ýi = predicted value of the target variable.

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑦𝑦−ý𝑦𝑦)2𝑛𝑛
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Compromise programming (CP)

CP is a well-established technique that allows 
for the ranking of statistical models based on 
their performance, considering multiple criteria 
simultaneously. In this study, CP was employed to 
rank the machine learning models used for PM2.5 
prediction based on key performance indicators 
such as R², RMSE, RRMSE, and MAE.

The LP metric is used to quantify the "distance" 
between the actual model performance values 
and the ideal values (where the model perfectly 
predicts the target). The formula for calculating 
the LP metric is as follows:

(17)

Where:

    Wn* is the observed value of the statistical 
performance measure for model nn.

   Wn is the ideal value of the performance 

measure (i.e., the perfect value, representing a 
scenario where the model’s prediction perfectly 
matches the observed data).

    mm is a parameter (typically m=1m = 1 or 
m=2m = 2) that controls the sensitivity of the 
metric to deviations from the ideal value.

Results and discussion

In this research, the performance of machine 
learning and deep learning models was 
compared on particulate matter PM2.5 prediction. 
The collected data was divided into training 
and testing sets with a ratio of 80:20. This 
data was analyzed by using machine and deep 
learning models. All the models performed best 
in predicting the air quality. Machine learning 
models performed better in only training, but 
deep learning models were better in both training 
and testing. The results of all these models are 
shown in Table 2 and the heatmap. 

    𝐿𝐿𝐿𝐿 = [∑ |𝑊𝑊𝑊𝑊 ∗ −𝑊𝑊𝑊𝑊|𝑚𝑚]𝑛𝑛
𝑖𝑖=1

1
𝑚𝑚           

Fig. 10. Representation of model performance metrics by Heatmap
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Evaluation of decision tree model 

Fig. 10 demonstrates the results of all the 
models. It is clear from the results that the 
decision tree model is best in the training by 
achieving the higher R2 value of 0.98 and lower 
RMSE (1.7716) and MAE (0.0609) values. This 
higher R2 value shows that the model is closely 
fit to the data pattern and precisely predicts the 
data in training. However, the performance of 
the Decision Tree model is not much better in 
testing as compared to the training. The Decision 
Tree model failed to maintain their superior’s 
position in the testing phase. It attained lower 
R2 values and higher RMSE and RRMSE values 

(A)

(B)

Fig. 11. Actual vs predicted PM2.5 values for training and testing phases by decision tree model and random 
forest

in the validation phase as compared to training, 
suggesting poor performance in the testing. This 
poor performance of DT model in the testing 
phase is due to its rigid structure of multiple trees 
and instability.  Fig. 11 (A) shows the actual data 
in comparison with the predicted data Decision 
Tree model. The observed and predicted data are 
differentiated by using distinct colors of lines. 
A vertical boundary line is provided in plots for 
separating the training and testing parts of data. 
The predicted lines are close to the observed 
values only in the training set and have some 
more gap than the other models showing the 
shallow ability of the Decision Tree in the 
testing phase.  
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Evaluation of random forest model

Similarly, Random Forest is better in training 
and has a higher R2 value of 0.97. However, 
the performance of RF models is not much 
better in testing than in training. RF model 
failed to maintain their superior’s position in 
the testing phase. Due to high variance in the 
data and less hypermeters it attained lower R2 

values and higher RMSE and RRMSE values 
in the validation phase as compared to training, 
suggesting poor performance in the testing. 
Fig. 11 (B) shows the predicting abilities of 
the Random Forest model. The predicted lines 
are close to the observed values only in the 
training set and have some more gap than the 
other models showing the shallow ability of the 
Decision Tree in the testing phase.

(A)

(B)
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Evaluation of RNNs

RNNs are a class of neural networks designed to 
deal the sequential data. In this study, the RNN 
model maintained a solid performance both in 
training and testing with the Adam optimizer 
having a learning rate of 0.001 and the Min-Max 

Fig. 12. Actual vs pedicted PM2.5 Values for training and testing phases by (A) RNN model (B) MLNN model 
(C) LSTM model (D) GRU model 

(C)

(D)

scaling technique [19]. The best results of RNN 
in both training and testing indicate its better-
predicting power. It acquired the best R2 value 
of 0.81 in training followed by an R2 value of 
0.68 in testing. Similarly, it accomplished lower 
error (RMSE, RRMSE, MAE) values. These 
best results of the RNN model suggest that this 
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model has the capability of capturing complex 
time series. Fig. 12 (A) shows the predicted and 
actual data by the RNN Model. The predicted 
and observed lines are also close to each other 
but have some minor gaps showing moderate 
capturing abilities of the GRU and RNN models. 

Evaluation of multi-layers neural network 

The Multi-Layers Neural Network (MLNN) 
model demonstrated strong performance in 
predicting PM2.5 in the air with an R2 value of 
0.98 in training and 0.88 in the testing phase. 
These higher R2 values and lower error rates 
indicate good prediction accuracy of this 
model. The model attained these results even 
on low epochs with a learning rate of 0.001. 
Because MLNN model process all the input at 
once and does not need to consider temporal 
sequence dependencies. Fig. 12 (B) the actual 
and predicted data by the MLNN model. In this 
Figure the predicted training lines are just above 
the observed data lines, indicating an accurate 
prediction of the MLNN model. 

Evaluation of the LSTM model

The LSTM model performed comparatively 
better than machine learning models. At the first 
stage, training this model was difficult, because 
it attained the best results on the epochs of more 
than 1000. Due to week temporal relationship 
between the input data and PM2.5, LSTM model 
unperformed as compared to the MLNN model. 
But despite all this, the model performed best 
in both the training and testing with higher 
R2 values of 0.86, and 0.70 and lower RMSE, 
RRMSE, and MAE values. The analysis through 
the model was performed by using a technique 
of Min-Max scaling and a learning rate of 0.001 
with an Adam optimizer. Fig. 12 (C) represents 
the actual and predicted data by the LSTM 
model. In this figure the predicted training lines 
are just above the observed data lines, indicating 

an accurate prediction of the LSTM model. 

Evaluation of GRU model 

As GRU model is an alternative to the LSTM 
and performed better in both the training and 
testing phases. The training R2 value of the 
GRU model was approximately equal to that of 
LSTM but in the testing phase R2 value of GRU 
was lower than LSTM. The training process of 
the GRU model was not difficult and the best 
results were obtained on lower epochs. Fig. 12 
(D) shows the predicted and actual data by the 
GRU Model. The predicted and observed lines 
are also close to each other but have some minor 
gaps showing moderate capturing abilities of the 
GRU model.

Ranking of models via compromise 
programming

These models cannot be ranked only based 
on a single statistical indicator, because some 
models have higher R2 values which is evidence 
of the best performance, but the same models 
have also higher error matrices leading towards 
weak performance. Therefore, all these models 
are ranked not only based on a single statistical 
metric but on the combined effect of these 
metrics. A compromise programming technique 
is used to get the combined effect of each model.  
Compromise programming results revealed that 
due to better performance in both training and 
testing the MLNN model was ranked at the top 
position. Whereas LSTM, GRU, RNN, Decision 
Tree, and Random Forest were placed at 2nd, 3rd, 
4th, 5th, and 6th position, respectively. The top 
position of the MLNN model suggests that the 
MLNN model is the best model for predicting 
the particulate matter PM2.5 in the air quality of 
Islamabad Pakistan. The ranking results of these 
models are shown in Table 2. 
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The research study provided a comparison of 
machine learning and deep learning models in the 
prediction of particulate matter PM2.5 in air. The 
study used NO2, SO2, and temperature as input for 
prediction because these constituents are deeply 
linked with PM2.5. It enhanced the prediction 
accuracy of particulate matter PM2.5 in the air of 
Islamabad and provided accurate results for better 
air quality management and prediction. Due to poor 
capturing capability of complex data and noise 
fitting nature of machine learning models, they 
could not achieve best results, especially in the 
testing phase [20]. 

The Decision Tree model is sensitive to a 
small change in the input data leading towards 
inconsistency in predictions [21]. While Random 
Forest has multiple trees but still fails in capturing 
complex data. Therefore, due to the time series 
complex data these models could not achieve the 
data pattern in the testing phase and compromised 
on the predictive accuracy of air quality prediction. 
They provided accurate results only in the training 
phase up to R2 0.98 and 0.97.

On the other hand, deep learning models are highly 
able to capture complex and time series data. They 
have the capability of automatic feature extraction 
and are designed for capturing non-linear data 
due to their multiple layers [22, 23]. RNN model 

Table 2. The ranking of models

Models 
Training Testing Ranking 

R-Square RMSE RRMSE MAE R-Square RMSE RRMSE MAE  

MLNN 0.985 0.027 0.124 0.013 0.882 0.076 0.344 0.036 1 

LSTM 0.863 0.082 0.37 0.054 0.707 0.12 0.541 0.077 2 

GRU 0.869 0.08 0.362 0.053 0.691 0.124 0.556 0.076 3 

RNN 0.818 0.094 0.426 0.064 0.69 0.124 0.557 0.084 4 

Decision Tree 0.989 1.772 0.061 0.061 0.754 7.883 0.278 2.214 5 

Random Forest 0.971 2.806 0.097 1.371 0.845 6.26 0.221 3.35 6 

 

is designed for sequential data but faces vanishing 
gradient problems in complex and long-term data. 
This situation makes the model less effective in 
maintaining long-term memory. Here it captured the 
data accurately in both phases but could not achieve 
superior position as compared to LSTM, MLNN, 
and GRU. The GRU model is an alternative to 
LSTM model and has the capability of capturing 
time-series data. But here due to the complex nature 
of data, it could not gain the relationship more 
correctly as compared to LSTM and MLNN models. 
LSTM model has capability of long-term memory 
and does not face vanishing gradient problems due 
to its gated mechanism nature. But it still can suffer 
from computational inefficiencies. Here LSTM is 
underperformed when compared to MLNN model. 
The MLNN model has different layers with different 
activation functions. It has a sequential data pattern 
capturing capacity. That is why the results of this 
model were best of all the other models. The model 
achieved a higher accuracy of 0.98 R2 in training 
with 0.88 in the testing phase. These results of 
the deep learning models, especially of MLNN, 
suggest their best prediction capability. Here deep 
learning models gained the pattern of data correctly 
in both phases training and validation and therefore, 
these models are proved to be the top-ranking in 
prediction of particulate matter PM2.5 in the air of 
Islamabad, Pakistan.
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Study limitations 

This study utilized only NO2, SO2, and 
temperature as input for predicting PM2.5, because 
these variables are directly involved in the PM2.5 
formation and variation and ignorance of these 
elements may limit the model ability to capture the 
data. The other atmospheric variables including 
precipitation, wind speed etc. are also involved 
in the PM2.5 variation but exclusion of these 
variables is the limitation of this study. Because 
these variables can lead towards dispersion and 
chemical transformation of PM2.5. However, 
future studies can include multiple environmental 
and metrological factors to enhance these 
models’ prediction power. Furthermore, the 
study is conducted for Islamabad city having 
dense urbanization, vehicular emissions, and 
temperature variation. It is applicable to the 
regions having similar PM2.5 pollution sources 
and climate variation as Islamabad. But its 
generalizability to other regions will require 
further investigation. For regions with different 
environmental conditions and different PM2.5 
pollution sources, modification to model input 
parameters and structure will be necessary. The 
performance and ranking pattern of these models 
can also be changed by changing the input 
parameters.    

Practical implications of study

The research work has important implications 
for air quality management. Industries and power 
plants as major sources of NO2, and SO2 can utilize 
this for regulating and reducing pollution. By 
identifying the primary contributor of PM2.5 from 
the input data, the policymakers can reduce their 
fast dispersion to secure the healthy environment. 
Furthermore, the relation between temperature 
and PM2.5 can provide timely warning about rise 
in PM2.5 level in the air. It can also be used in 
preparing air quality management policies. 

Conclusion

In this study, six machine learning models, 

including four neural network architectures, were 
utilized to predict the air quality of Islamabad, 
Pakistan. These models were MLNN, LSTM, 
GRU, RNN, Random Forest, and Decision Tree. 
The input features included temperature, SO₂, 
and NO₂, while PM2.5 was the target variable. 
The performance of these models was evaluated 
using statistical indicators such as R², RMSE, 
RRMSE, and MAE. Additionally, a compromise 
programming technique was employed to rank 
the models based on their overall performance. 
The results revealed that the MLNN model 
outperformed the others, achieving the highest R² 
value of 0.98 and the lowest RMSE, RRMSE, and 
MAE values during both the training and testing 
phases. Other models were ranked as follows: 
LSTM (2nd), RNN (3rd), GRU (4th), Decision 
Tree (5th), and Random Forest (6th).

Despite the MLNN model's robust performance, 
its limitations must be acknowledged. Like all 
machine learning models, MLNN’s accuracy 
is dependent on the quality and quantity of 
data, as well as the selection of features and 
hyperparameters. In this study, only three input 
features (temperature, SO₂, NO₂) were used, 
which may not capture the full complexity of PM2.5 
variations influenced by other meteorological 
and environmental factors. Moreover, while 
compromise programming provided an objective 
ranking, it is important to consider the practical 
feasibility of deploying these models for real-
time air quality monitoring and management.

To further enhance PM2.5 prediction, future 
studies should explore incorporating additional 
features such as wind speed, humidity, and 
vehicular emissions to better capture the dynamic 
factors influencing air quality. Hyperparameter 
tuning should be performed systematically using 
advanced optimization techniques like grid 
search, random search, or Bayesian optimization 
to identify the optimal configurations for each 
model. Additionally, alternative modeling 
approaches, such as ensemble learning or 
hybrid models, could be investigated to improve 
predictive accuracy and robustness.
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For practical implementation, it is crucial to 
integrate predictive models into air quality 
monitoring systems and decision-support 
frameworks to provide actionable insights for 
policymakers and stakeholders. This research 
provides a foundation for developing more 
accurate and reliable PM2.5 prediction tools, 
contributing to air pollution mitigation and 
public health protection. A sustainable and clean 
environment can be achieved by combining 
improved models with proactive air quality 
management strategies.
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