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ABSTRACT

Introduction: Execution of COVID-19 lockdown measures caused variations 
in air pollution worldwide. This paper investigates the impact of COVID-19 
stringency measures on the spatio-temporal dynamics of air pollution in 
Mumbai, India, using a comprehensive two-and-a-half-year pandemic period 
dataset.
Materials and methods: We classified the pandemic period into 7 phases and 
21 sub-phases based on the severity of the Oxford COVID-19 Government 
Response Tracker (OxCGRT) Stringency Index (SI). Optimized Hotspot 
analysis (OHS) and Ordinary Least Square Regression models explored the 
spatio-temporal fluctuations and the effect of stringency measures on air 
quality.
Results: The R2 value varied; with the best model R2 of 0.61 for Particulate 
Matters (PM10) and Nitrogen dioxide (NO2) and lowest of 0.23 for Sulfur 
dioxide (SO2).  A 10-point increase in SI caused a 3-7% reduction in air 
pollutants. Substantial reduction in average PM10, PM2.5, NO2, and Carbon 
monoxide (CO) was observed throughout the COVID-19 phases. Meteorology 
and SI collectively caused maximum reduction of 82.6%, 72.7%, 53.8%, 
52.2%, 49.1%, 28.4% for NO2, PM2.5, PM10, NH3, CO, and SO2 respectively, 
during complete or extreme lockdown phases. Except SO2, seasonality 
significantly influenced the pollutant concentrations. Winter was the worst 
period while monsoon was the best. OHS identified central Mumbai wards as 
hotspots and areas close to the national park as coldspots. 
Conclusion: PM10, NO2 and CO were more affected by SI measures than NH3 
and SO2. For a rapid emergency response to high PM10, implementation of 
SI, very high (≥ 80 score) and above is advised. Findings of this study have 
significant public health policy implications, especially among global south 
nations.
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Introduction 

Air pollution is the world’s largest environmental 
health threat [1]. In economies around the world, 

urban air pollution is a major problem. Ambient 
particulate matter pollution was attributed to both 
an estimated 6.45 million deaths and the largest 
increase in exposure risk for Disability Adjusted 
Life Years (DALYs) in 2019 [2]. December 2019, 
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the first case of COVID-19 caused by a novel 
coronavirus in Wuhan, China was reported. The 
pandemic allowed the largest scale experiment 
ever to examine the relative changes in air quality 
compared to that during normal times due to 
COVID-19 responses [3]. 

World Health Organisation (WHO) on 11th March 
2020, declared COVID-19 a global pandemic, 
due to the rapid spread and high mortality 
rate. Following this, globally, unprecedented 
government action was prompted to curtail 
the rapid spread of COVID-19 virus [4]. The 
stringent lockdown measures imposed across the 
world caused reduction in air pollution levels 
due to reduced industrial, commercial, and 
human activities [5]. Due to the lockdown, we 
could comprehend the impact of anthropogenic 
activities on overall air quality. A study covering 
76 countries worldwide, reported differences in 
response of various air pollutants to lockdown 
measures. It estimated a reduction of 23-37% of 
NO2, 14-20% of PM10, 2-20% of SO2, 7-16% of 
PM2.5 and 7-11% of CO [3]. An estimated 20-40% 
reduction in NO2, Particulate Matters (PM10 and 
PM2.5) during the lockdown period was reported 
by a study involving five European nations [5]. 
Reductions in hospitalizations for respiratory 
ailments including asthma, were the most 
impacted short-term outcomes of air pollution 
during lockdowns [6]. Additionally, a decline in 
number of premature deaths of around 99,270 to 
146,649 were reported due to improved air quality 
in a study across 76 countries [3].

India executed one of the most stringent nationwide 
COVID-19 lockdowns around the world. Further, 
during a two-and-a-half-year period, stringency 
measures of different strengths (varying levels 
of activities) were imposed to tackle the spread 
of virus across the country. Though people and 
businesses had to bear a lot of hardships, one 
of the favourable outcomes of the stringency 
measures was the improvement in environmental 
conditions. The stringency measures are the 
containment and closure policies imposed to 
reduce the transmission of COVID-19. These 
measures resulted in improved air quality in Indian 

cities, however it was not uniform across cities 
and pollutants [7, 8]. Indian studies also reported 
significant reductions in the range of 18-70 % of 
NO2, 31 – 60 % of PM10 and PM2.5, and 10-40 % 
of CO during lockdown-1. Significant drops were 
likewise observed in SO2, NH3 concentrations [9-
11]. A 51% reduction in National Ambient Air 
Quality Index (NAQI) was noted in Delhi during 
the lockdown period [12]. Likewise, the average 
Air Quality Index (AQI) values in Mumbai 
reduced from 132 (moderate) of pre-lockdown 
to 71–53 (satisfactory) and 34 (good) during 
the lockdown and unlock phases [9]. The air 
quality improved, because the lockdown process 
decreased industrial and commercial activity, 
including human movement [13]. The combined 
effect of changes in the emissions, meteorology, 
and atmospheric chemistry were responsible for 
the changes reported during the lockdown and 
hence requires detailed investigations [10].

Air pollution is highly spatial and temporal in 
nature. India has 12 of the 15 most polluted cities 
in Central and South Asia [1]. Reduction in PM10, 
PM2.5 and NO2 and enhancement in O3 during the 
COVID-19 lockdown period was observed to be 
proportional to the population density of the region 
[10]. Mumbai, the financial capital of India has a 
very high population density and consistently high 
pollution levels. A boom in commercial activity, 
construction and vehicular traffic has led to acute 
air pollution conditions in the megacity, Mumbai 
[14]. The implementation and formulation of 
policies are usually at the city scale while most 
of the studies focus on a national or regional 
scale [15].  To initiate the policies for reducing 
air pollution, an amalgamation of Geographical 
Information System (GIS) and statistical analysis 
can help to identify relative critical areas that need 
more consideration from decision makers [16]. 
Hence, using geospatial tools, an attempt has 
been made in this study to understand the spatial 
and temporal distribution of air pollutants due to 
stringency measures at the smallest administrative 
level (ward) in an urban city of India. Also note 
that there is lack of studies focussing on the ward 
level seasonal air pollution hotspot mapping for 
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Mumbai. Identification of hotspots and coldspots 
enhances development policies and strategies for 
air pollution reduction.

The major gap in the literature is the focus of 
studies confined to specific phases, especially 
the first COVID-19 lockdown phase. This paper 
contributes to the existing literature gap by 
attempting a long-term time-series analysis of 
the impact of stringency measures on air quality. 
The long-term time series analysis provides an 
extensive view of the impact of meteorology and 
stringency measures on air quality throughout 
the different phases of COVID-19. This will 
assist to determine the best stringency measures 
and facilitate both emergency and long-term 
pollution reduction strategies. To our knowledge, 
this is the first of its kind study on COVID-19 
stringency measures and various air pollutants 
using comprehensive daily data for a two- and 
half-year pandemic period. To understand the 
spatio-temporal dynamics, this study aims to 
analyse the seasonal trends in air pollutants. It then 
identifies the seasonal effects on air quality index 
hotspots using Optimized Hotspot analysis (OHS), 
investigates the relationship between stringency 
measures and air quality for a two- and half-year 
time-line using Ordinary Least Square (OLS) 
regression. Finally, it estimates the percent change 
in air pollutants compared to pre-lockdown (No-
Lockdown) and complete lockdown scenarios 
and suggests appropriate mitigation measures. 
To summarize the methodology, the data was 
processed for two separate timelines. First, a 
seasonal average was used to estimate the seasonal 
fluctuations in hotspots, and then a phase-wise 
average based on the COVID-19 Stringency Index 
(SI) was determined to comprehend the impact of 
SI on air quality. 

Materials and methods

Study area

Mumbai, the financial capital of India, is located 
(18º 58' and 19º 17' N latitudes and 72º 46' and 
72º 60' E longitudes) on the western coast of 

the country in the state of Maharashtra. It is an 
island city separated from the mainland by a 
narrow Thane creek and a wider Harbour Bay. 
To the north of the city lies a reserved forest, the 
Sanjay Gandhi National Park (SGNP) also called 
the green lung of Mumbai covering 103 Km2 

area, with great biodiversity and archaeological 
significance. Mumbai experiences a monsoon 
climate with four major seasons summer (March-
May), monsoon (June-August), post-monsoon 
(September-November) and winter (December-
February). Being a megacity, Mumbai was one 
of the worst COVID-19 impacted cities in India 
and hence, compared to other cities, stringent 
measures of varying strengths were enforced for a 
longer period in Mumbai.

The study area comprises of Mumbai district and 
Mumbai suburban district together called Greater 
Mumbai (henceforth referred to as Mumbai). The 
total area of Mumbai is 476.24 Km2 [17] divided 
into 24 wards. Out of 12.44 million [18] people 
living in Mumbai, 52.5 % people live in slums 
which creates a huge difference in their socio-
economic conditions.

To evaluate the spatio-temporal dynamics of 
COVID-19 stringency measures on air pollution, 
a three-stage analysis was carried out. First, a 
seasonal trend analysis, then a seasonal hotspot 
analysis, followed by a regression analysis of 
different phases of COVID-19.

Air quality and meteorological data 

Daily air quality data for a three-year period 
from 1st June 2019 to 21st Aug 2022 for PM10, 
PM2.5, NO2, SO2, NH3 and CO were acquired 
from Central Pollution Control Board (CPCB) 
[19] managed Continuous Ambient Air Quality 
Monitoring Stations (CAAQMS) online data 
portal. Mumbai has twenty CAAQMS, however, 
only eight stations provided continuous data for all 
the variables throughout the study period, hence 
these eight-station data were used. The CAAQMS 
also monitor meteorological variables. Daily 
Temperature (Temp), Relative Humidity (RH) and 
Wind Speed (WS) data from 1st June 2019 to 21st 
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August 2022 were acquired from the same portal. 
Locations of CAAQMS used in the study are 
shown on a ward-level map of Mumbai in Fig. 1.

Stringency index data

COVID-19 emerged as a global pandemic 
impacting almost all the countries worldwide. 
To track the government responses globally 
(stringency measures), the Oxford COVID-19 
Government Response Tracker (OxCGRT) [4] 
was introduced which also estimates a composite 
index of stringency (stringency index-SI). The 
stringency index score ranges from 0-100, where 
0 indicates no restrictions, and 100 indicates 
complete lockdown. The stringency index is 
calculated based on eight indicators of containment 
and closure policies (school closing, workplace 
closing, cancel public events, restrictions of 
gathering size, closed public transport, stay-
at-home requirements, restrictions on internal 
movements and restrictions on international travel) 
and one health systems policy (public information 
campaigns). All the indices were ordinal where 
school closing, workplace closing and stay at 
home requirements have three values (0, 1, 2, 3), 
restrictions on public gathering and restrictions on 
international travel have four values (0, 1, 2, 3, 4) 
and the remaining indices have two values (0, 1 ,2). 

Fig. 1. Air quality monitoring station locations on a ward-level map of Mumbai

Eash sub-index score for any indicator on a given 
day is calculated, which normalizes the different 
ordinal scores to produce sub-index score between 
0-100. These are then used to calculate the index 
score. The detailed calculations of the SI index is 
beyond the scope of this paper and can be referred 
to in Hale’s research [4].

We considered daily stringency data from 1st Jan 
2020 to 21st Aug 2022, downloaded from  Oxford 
COVID-19 Government Response Tracker, 
(OxCGRT) [20] portal for Mumbai, India. The 
data was classified into seven main phases 
consisting of twenty-one sub-phases based on the 
stringency measures applied in Mumbai. The five 
main phases are No Lockdown (NLD) with SI- 0, 
Low (L) with SI-1 to 29.9, Medium (M) with SI-
30 to 49.9, High (H) with SI-50 to 69.9, Very High 
(VH) with SI- 70 to 89.9, Extreme (EX) with SI-
90 to 99.9, and Complete Lockdown (CLD) with 
SI-100. Low has L1 and L2, Medium has M1, M2 
and M3, High has H1, H2, H3, H4 and H5, Very 
high has VH, VH2, VH3, VH4, VH5 and VH6 
and Extreme has EX1, EX2 and EX3 sub-phases 
respectively. No Lockdown (NLD) phase refers 
to the days prior to the implementation of any 
stringency measures (pre-lockdown). The details 
of the various COVID-19 lockdown phases from 
1st Jan 2020 to 21st Aug 2022 are given in Table 1.
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Table 1. Details of the various COVID-19 lockdown phases from 1st Jan, 2020 to 21st Aug, 2022

Lockdown 
Phase 
Name Period 

Stringency 
Index 

COVID-19 Meteorology 

Total 
Confirmed 
Cases 

Total 
Confirmed 
Deaths 

Avg 
RH (%) 

Avg 
Temp (oC) 

Avg 
WS 
(m/s) 

 

NLD 1/1/20-29/1/20 0.00 0 0 69.07 23.62 1.24 

L1 30/1/20-12/3/20 8.85 32 0 62.95 25.35 1.16 

M1 13/3/20-24/3/20 41.20 634 0 62.34 26.78 1.19 

CLD 25/3/20-19/4/20 100.00 35935 2194 73.87 28.36 1.24 

EX1 20/4/20-31/5/20 97.22 1154069 41380 74.68 30.22 1.31 

VH1 1/6/20-6/9/20 83.50 36213635 1271085 89.93 27.20 1.33 

H1 7/9/20-4/11/20 63.21 83229902 2219130 83.69 27.72 1.10 

M2 5/11/20-31/3/21 40.20 298398930 7352920 66.12 26.36 1.16 

H2 1/4/21-4/4/21 54.63 11724359 221811 76.16 27.89 1.13 

VH2 5/4/21-13/4/21 84.26 29591987 515768 74.02 28.98 1.12 

EX2 14/4/21-10/5/21 97.22 118663863 1802529 76.40 29.72 1.17 

VH3 11/5/21-24/5/21 87.96 75773453 1163344 77.49 29.81 1.24 

EX3 25/5/21-31/5/21 91.67 39834084 651331 78.53 29.98 1.30 

VH4 1/6/21-6/6/21 80.56 34785182 588756 78.95 29.40 1.24 

H3 7/6/21-28/6/21 66.03 130838287 2503664 89.23 27.34 1.38 

VH5 29/6/21-30/6/21 70.83 12113037 243749 86.06 28.09 1.13 

H4 1/7/21-9/1/22 62.54 1255618623 26498416 81.25 26.66 1.38 

VH6 10/1/22-23/1/22 72.22 101180054 1985928 72.48 22.48 1.09 

H5 24/1/22-31/1/22 66.67 61106880 1139228 58.93 22.13 1.20 

M3 1/2/22-1/4/22 45.08 471186576 8646453 66.08 26.19 1.10 

L2 2/4/22-21/8/22 13.89 1128367410 21006517 84.00 28.51 2.76 
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Stringency 
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COVID-19 Meteorology 

Total 
Confirmed 
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WS 
(m/s) 
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Estimation of temporal dynamics

Seasonal spatial analysis was carried out for 
four seasons Summer, Monsoon, Post-Monsoon 
and Winter based upon the variations of local 
meteorological characteristics. For the period 
of 2019 to 2022 the variations in air pollutant 
concentrations viz., PM10, PM2.5, NOx, SO2, 
NH3 and CO for Mumbai city were analysed.

Since the air quality and meteorological 
data were available for only eight stations 
in Mumbai we interpolated the data to get a 
complete wardwise statistics. We performed 
interpolation of air pollutants and meteorology 
in a fishnet created for the study region 
consisting of 153 points using the eight 
monitoring station data in ArcGIS. Among 
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the different interpolation techniques Inverse 
Distance Weighted (IDW), Kriging and Spline 
are most used in air pollution studies, among 
these Kriging and IDW give better results 
than Spline [21]. Compared to kriging, IDW 
showed better similarity between measured and 
interpolated values for SPM, SO2 and NO2 [22]. 
Between IDW and Kriging, it is difficult to 
conclude which method is better than the other, 
however, for the gaps, IDW fills in well where 
due to the absence of data stationarity, Kriging 
fails to interpolate [23]. Hence, IDW was used 
in this study. IDW assumes that things closer to 
each other are more alike than those which are 
farther apart and higher weights are assigned to 
the points closest to the target location, which 
change as an inverse function of distance [23].

Air quality index estimation

Indian national ambient air quality index 
(referred henceforth as AQI), 2014 demonstrates 
the nature and breathability of the ambient 
air as a single index value obtained from the 
cumulative calculation of the major criteria 
pollutants [9]. For AQI estimation, sub-indexes 
were calculated for each pollutant, which is a 
linear function of concentration. The worst sub-
index is the AQI for that location. The AQI is 
classified as good (0–50), satisfactory (51–100), 
moderate (101–200), poor (201–300), very poor 
(301–400), and severe (>401). We used seasonal 
AQI averages to interpolate AQI for all wards 
of Mumbai using IDW interpolation technique 
from 1st June 2009 to 21st Aug 2022 based on 
PM10, PM2.5, NO2, SO2, NH3 and CO. 

Optimized hotspot analysis

For a systematic investigation of hotspots, 
statistical tools like Global Moron’s I and Getis-
Ord Gi* are used to explain the spatial pattern. 
Global Moron’s I indicates if the space is 
clustered or an outlier while and Getis-Ord Gi* 
provides information if the clusters are of high 
or low value. Hence, Getis-Ord Gi* was used to 

measure the strength of the clusters. ArcGIS has 
an inbuilt Optimized Hotspot analysis (OHS) 
tool, which is a local clustering tool based on 
Getis-Ord Gi* statistic. It identifies statically 
significant spatial clusters of high (hotspots) 
and low (coldspots) values. The only difference 
is OHS tool has an automatic incremental 
spatial autocorrelation to find the distance 
band compared to Getis-Ord Gi* thus reducing 
the manual error. The OHS tool creates a new 
Output Feature Class with a z-score, p-value 
and confidence level bin (Gi_Bin). Features in 
the +/-3 bins are statistically significant at the 
99 % confidence level; features in the +/-2 bins 
reflect a 95 % confidence level; features in the 
+/-1 bins reflect a 90 % confidence level; and 
the clustering for features with 0 for the Gi_Bin 
field is not statistically significant. We used the 
interpolated seasonal AQI from 1st June 2019 to 
21st Aug 2022 for optimized hotspot analysis in 
ArcGIS 10.2. 

Ordinary least square (OLS) regression

We estimated the impact of stringency measures 
on air quality using OLS regression analysis 
in SPSS software. For the time series model, 
applying OLS is the most straightforward 
strategy [3]. Meteorological factors (wind 
speed, temperature, relative humidity) play a 
vital role in the concentration and distribution 
of air pollutants. Interpolated data from eight 
monitoring stations of daily air pollutants (PM10, 
NO2, SO2, NH3 and CO) and meteorology 
(relative humidity, temperature and wind speed) 
along with SI averaged over the twenty-one 
sub-phases of COVID-19 was used for OLS 
regression. Furthermore, lagging the pollution 
variable helped overcome the autocorrelation 
issue in the data. Log of the dependent variables 
helps in normalizing the data and in reducing the 
influence of outliers [3]. Hence, we used a log of 
the dependent variables. 

To estimate the effect of the stringency index on 
air quality, we specify the following regression 
equation:
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(1)

Where, Yt represents the air pollutant on 
day t, Yt-1 indicates the lagged air pollutant 
concentration, OxCGRTt is the SI on day t and 
Met are the meteorological variables (relative 
humidity, temperature, and wind speed) on day 
t for Mumbai. θ1, θ2, and θ3 are the coefficients 
of pollutant, stringency index and meteorological 
variables respectively. € denotes the random error 
term in Eq. 1. 

Results and discussion

The main objectives of this study were to identify 
the spatio-temporal dynamics of air pollutants 
seasonally and to assess the magnitude of changes 
in air pollutants in Mumbai city during different 
phases of COVID-19 policies. 

Temporal analysis

We performed temporal analysis to understand 
the seasonal impacts of air pollutants (PM10, 
PM2.5, NO2, SO2, NH3 and CO) based on data 
from June 2019 to Sept 2022. Data from eight 
monitoring stations were used for the five 
criteria pollutants except for CO (seven station 
data). Temporal analysis in Fig. 2. demonstrated 
seasonal fluctuations; with highest concentrations 
in winter followed by post-monsoon or summer 
and the lowest in monsoon season for all 
pollutants except SO2. The low concentrations 
during monsoon can be attributed to high wind 
speed and washout due to precipitation.

Particulate Matters (PM10 and PM2.5) exhibited 
high seasonal fluctuations. A clear annual 
seasonal trend starting from post-monsoon and 
peaking in winter and reducing during summer 
to reach the lowest during monsoon months was 
observed for particulate matter (both PM10 and 
PM2.5). This is in accordance to the results of a 
study [16] that showed temporal distributions of 
SPM and PM10; where summer and winter had 
the highest concentrations while monsoon had 

the lowest. May, 2022 recorded the highest mean 
concentration in ward K/W for PM10 (298.4 µg/
m3) and Jan, 2021 for PM2.5 (119 µg/m3) in ward 
L. Meanwhile July, 2020 in ward R/C recorded the 
lowest mean concentrations for both PM10 (16.9 
µg/m3) and PM2.5 (4.8 µg/m3) respectively.  May 
2022, recorded abnormally high concentrations 
of PM10 at all stations. This could be attributed 
to the broad relaxation of stringency measures 
and opening-up of commercial and industrial 
activities. 

Seasonal effects of  NO2 were observed in all wards 
except wards R/C and S. NO2, concentrations 
exceeded the CPCB standard of 80 µg/m3, just 
four times throughout the study period, in the 
months of January and February. August, 2020 
recorded the lowest mean concentration of NO2, 
0.7 µg/m3 (ward R/C) and highest mean of 104.1 
µg/m3 (ward F/N) was recorded during January 
2021. 

Absence of a seasonal SO2 trend indicates 
that sources impacted SO2 levels more than 
meteorology. SO2 conformed to the CPCB 
standard of 80 µg/m3 throughout the study 
period. August, 2022 recorded the highest mean 
SO2 of 77 µg/m3 (ward F/N) while August, 2019 
recorded the lowest mean SO2 of 1.5 µg/m3 (ward 
G/S). 

Ammonia mostly showed the seasonal trend 
except a few times when it recorded anomalous 
peaks however, throughout the study period it 
conformed to the CPCB limit of 400 µg/m3. June, 
2021 recorded the lowest mean concentration of 
NH3, 0.2 µg/m3 (ward G/S) and highest mean 
of 163.5 µg/m3 (ward F/N) was recorded during 
November, 2020.

CO also depicted a seasonal trend except a few 
times when it measured anomalous peaks. CO 
concentrations exceeded the CPCB standard 
of 2 mg/m3, just thrice throughout the study 
period. August, 2020 recorded the lowest 
mean concentration of CO, 0.06 mg/m3 (ward 
G/S) while highest mean of 2.61 mg/m3 (ward 
K/W) was recorded during October, 2020.

ln(Yt)= θ1ln(Yt-1)+ θ2OxCGRTt+ θ3Mett+€t                                         
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During the inter-year comparison of the 
gases, we noted that the concentrations were 
below the CPCB standard during most of 
the study period. However, the particulate 
matter concentrations exceeded the standards 
during winter, post-monsoon, and summer 
seasons. We identified November to April and 
November to February as crucial months for 
PM10 and PM2.5 concentrations respectively. 
May, 2022 for PM10 and March, 2022 for 
PM2.5 showed abnormally high concentrations 
compared to the previous years. This could 
be due to greater relaxations in COVID-19 
lockdown measures and a boom in economic 
activities.

The percentage of pollutants responsible for 
AQI is given in Fig. 3. Particulate matter (PM10 
followed by PM2.5) was primarily responsible 
for poor air quality throughout all the seasons in 
Mumbai. CO contributed to AQI once in post-
monsoon, SO2 contributed twice in monsoon while 
PM2.5 contributed numerous times in winter to 
AQI throughout 2019-2022 period. Summer AQI 
was completely dominated by PM10 throughout 
the study period. Hence, we infer that among all 
the pollutants particulate matter is responsible for 
poor AQI, the most. This calls for the immediate 
implementation of mitigation policies focusing 
on particulate matter reduction for improvement 
of Mumbai’s air quality index. 
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Fig. 2. Average monthly trend of criteria air pollutants from eight monitoring stations of Mumbai from June 
2019 to August 2022

Fig. 3. Percentage contribution of criteria pollutants to (a) Annual AQI (b) Monsoon AQI (c) Post-Monsoon 
AQI (d) Winter AQI (e) Summer AQI
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Seasonal impact on AQI hotspots 

Comparing the spatial distribution of AQI 
hotspots and coldspots (Figs. 4. and 5) seasonally 
across 2019-2022 helped establish the hotspot 

wards in Mumbai city. Temporal profiles ward-
wise show if the hotspot identified is consistently 
high during the study period or if the patterns 
suggest the high values are more transient. 

Fig. 4. Overall seasonal average air quality index hotspot map
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Fig. 5. Season-wise variation in air quality index hotspot map for the period 2019-2022

Hotspot analysis indicated wards K/W, K/E, L, 
N, H/E, H/W, M/E, and M/W were hotspots with 
99% significance in all the seasonal averages 
for the 2019-22 period; contrastingly, wards 
R/N, R/C, R/S and A were coldspots with 99% 
significance. The hotspots identified can be 
regarded as steady because they have remained 
consistent across most of the seasons for over 
three years. The hotspot analysis delineates central 
Mumbai wards as the high pollution hotspots 
throughout the study period, while wards north 
near the national park are coldspots throughout 
the year. This highlights the importance of green 
cover in pollution control in Mumbai. The Sanjay 
Gandhi national park is the last green space left 
in Mumbai and it needs to be protected at all 
cost. Apart from the northern wards as coldspots 
only ward A from south Mumbai is a coldspot 
across the seasons. Ward A could be a coldspot 
because of its geographic location (situated at the 
tip of the Mumbai peninsula) surrounded by sea, 

which transports away the pollution quickly. We 
also observe a dramatic shift in hotspot wards 
in summer, it moves more towards the north, 
compared to other seasons indicating a shift in 
wind direction. Our results are consistent with 
theories that city centres are typically air pollution 
hotspots.  The reason for central Mumbai wards 
being persistent hotspot areas could be less green 
cover, high road density, ongoing largescale 
construction activities and presence of small- and 
large-scale industries in these wards. 

Time series dynamics in air quality due to 
stringency measures

The box and whisker plot (Fig. 6.) evidently 
captures the temporal dynamics of COVID-19 
stringency measures on various pollutants. The 
imposition of the harshest policy measures during 
the most stringent initial phases of the COVID-19 
lockdown drastically reduced the concentration 
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of all the pollutants. Except for SO2, the other 
five pollutants conform to the trend; reduction 
during the high stringency period and increase in 
concentration during low stringency period. 

The most prominent reductions during the 
COVID-19 stringency phases were observed 
during VH5 for (10.59 µg/m3) PM10, VH1 for 
(7.24 µg/m3) PM2.5, VH5 for (1.14 µg/m3) NO2, 
EX2 and EX3 for (1.06 µg/m3) SO2, EX3 for 
(1.56 µg/m3) NH3, EX3 for (0.13 mg/m3) CO. 
Though the most stringent phase was CLD 
(complete lockdown phase) the particulate matter 
concentrations recorded lowest during VH5 and 
VH1 both of which coincided with the monsoon 
season. PM10 recorded lowest of 10.59 µg/m3 
during VH5 while PM2.5 recorded lowest of 
7.24 µg/m3 during VH1. This highlights the role 
of meteorology in particulate matter reduction 
through wet deposition. Similarly, we observe 
a decline in the concentrations of gaseous 
pollutants more during the phases following 
the complete lockdown period. In the second 
phase of the lockdown measures even though 
relaxations were provided for selected non-
essential activities the emissions declined further 
than the complete lockdown period. It indicated 
that either the enforcement of the lockdown was 
more stringent or people were not ready to take 
advantage of the relaxations due to the fear of 
COVID-19 virus [7]. 

Sub-phases VH1, VH4, H3, VH5 and a part 
of H4 coincided with monsoon season.  Sub- 
phases NLD, part of L1, part of M2, H4, VH6, 
H5 and part of M3 coincided with winter season. 
A very distinct seasonal impact can be seen on 
particulate matter (PM10 and PM2.5) during the 
different sub-phases of the stringency index. 
Despite the imposed stringency measures, 
seasonal trend starting from post-monsoon and 
peaking in winter and reducing during summer to 
reach the lowest during monsoon months could 
be observed. The highest mean concentrations 
throughout the COVID-19 pandemic period were 
recorded during the sub-phases H5 for (273.29 
µg/m3) PM10, H5 for (89.09 µg/m3) PM2.5, NLD 

for (78.14 µg/m3) NO2, H5 for (55.44 µg/m3) SO2, 
VH6 for (56.60 µg/m3) NH3 and M3 for (1.32 
mg/m3) CO. All of which were during the winter 
season. Hence, this analysis reconfirms the impact 
of the winter season on pollutant concentrations.

Throughout the COVID-19 stringency assessment 
period all gases were below the CPCB standards 
while the mean values of particulate matter 
(PM10 and PM2.5) exceeded the CPCB standard a 
few times. Mean PM10 concentrations exceeded 
during NLD, L1, M1, M2, H2, VH2, VH6, H5 
and M3 while PM2.5 exceeded during NLD, M2, 
VH6, H5 and M3 sub-phases. All these sub-
phases coincided with winter except M1, H2 
and VH2 which coincided with summer. Apart 
from the meteorology, another important reason 
for high pollution during winter could be due to 
more relaxations in stringency measures during 
the winter period. The most stringent COVID-19 
measures mostly coincided with summer and 
monsoon and eased during the other periods as 
the number of COVID-19 cases reduced. This 
could be another cause of high pollutants during 
the phases of winter compared to other period. 

The average, minimum, maximum of air pollutants 
and stringency index for different phases of 
COVID-19 are given in Table.2. Stepping-up to 
the phase level, we still observe that the average 
PM10 exceeded the CPCB standards in phases 
NLD, L, M and H while average PM2.5 exceeded 
in phase NLD. Ammonia and SO2 concentrations 
were way below the CPCB standards even during 
no lockdown period. NO2 and CO averages were 
also below CPCB standard but the maximum 
values were close to the limits indicating a need 
to exercise control in these emissions. Except for 
CLD period, PM10 maximum values exceeded the 
CPCB standard greatly. Also, the average PM10 
concentrations exceeded the CPCB standard till 
High (H) period. Indicating very high and above 
stringency measures need to be applied to bring the 
values under CPCB standard while for achieving 
the WHO standard long term aggressive action 
plan was required.
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Fig. 6. Box plot of air pollutant variations during different stages of COVID-19 stringency measures

Fig. 7. Baseline map of air pollutants in Mumbai COVID-19
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Table 2. Average, minimum, maximum of air pollutants and stringency index for different phases of 
COVID-19 
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NLD 

AVG 150.9 72.7 38.9 7.8 19.2 0.8 0 0 0 0 0 0 0 0 0 

MIN 100.9 55.2 3.9 5.3 10.1 0.5 0 0 0 0 0 0 0 0 0 

MAX 204.9 84.2 78.1 12.0 30.4 1.2 0 0 0 0 0 0 0 0 0 

L 

AVG 122.0 42.8 25.3 15.6 17.2 0.7 0 0 0 0 0 0 0 2 11 

MIN 59.2 21.9 3.8 4.0 2.5 0.2 0 0 0 0 0 0 0 1 9 

MAX 212.4 66.6 65.4 32.6 53.9 1.1 0 0 0 0 0 0 0 2 14 

M 

AVG 145.1 56.6 33.3 14.3 21.8 0.8 2 2 1 1 1 0 0 2 42 

MIN 80.1 22.5 3.3 4.1 6.4 0.2 1 1 1 0 0 0 0 1 41 

MAX 222.1 85.4 77.2 33.2 61.5 1.4 3 2 1 2 2 1 1 3 45 

H 

AVG 122.1 41.6 19.1 19.5 19.0 0.6 2 2 2 3 1 1 1 3 63 

MIN 40.8 14.0 1.8 3.5 1.8 0.2 1 1 1 2 0 0 0 2 40 

MAX 273.3 99.7 63.3 55.4 115.0 1.6 3 3 2 4 2 2 2 3 67 

VH 

AVG 76.9 28.9 14.9 15.5 16.5 0.4 3 2 2 4 1 2 2 3 80 

MIN 10.6 10.6 1.1 0.7 1.6 0.0 2 2 1 3 1 0 0 2 63 

MAX 215.9 86.4 56.4 52.8 94.3 1.1 3 3 2 4 2 3 2 3 88 

EX 

AVG 70.7 19.8 9.2 10.3 8.4 0.2 3 3 2 4 2 3 2 3 95 

MIN 24.5 7.2 1.2 3.6 1.6 0.1 3 2 2 3 1 1 2 3 84 

MAX 138.7 35.1 31.0 20.6 22.7 0.4 3 3 2 4 2 3 2 4 97 

CLD 

AVG 69.8 26.2 6.8 5.6 9.2 0.4 3 3 2 4 2 3 2 4 100 

MIN 55.6 23.0 2.5 2.9 3.8 0.2 3 3 2 4 2 3 2 4 100 

MAX 85.6 28.7 12.6 12.4 14.8 1.1 3 3 2 4 2 3 2 4 100 
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The COVID-19 harsh stringency measures 
helped estimate the lowest average possible 
concentrations during 2020 to 2022 period 
among the twenty-one sub-phases. It can be 
termed as the baseline values of each pollutant 
for Mumbai city. The baseline values observed 
for Mumbai were 10.59 µg/m3, 7.24 µg/m3, 
1.14 µg/m3, 1.06 µg/m3, 1.56 µg/m3 and 0.13 
mg/m3 for PM10, PM2.5, NO2, SO2, NH3 and CO 
respectively.  This directly indicates the impact 
of stringency measures, that caused decrease in 
anthropogenic activities, affecting the pollution 
concentration levels in Mumbai. Fig.7. indicates 
the spatial distribution of baseline period of 
the six criteria pollutants due to COVID-19 
stringency measures during the two-and-half 
year study period. Though all the values were 
below the CPCB standards and without much 
variation we plotted the maps to understand the 
spatial distribution (using standard deviation) 
during baseline conditions. Even during the 
lowest concentrations, we observe variations 
in spatial distribution with relatively high 
concentrations in the central Mumbai wards 
for PM10, PM2.5, NO2, SO2 and NH3. This is in 
concordance with the hotspot analysis results. 
The baseline conditions developed due to 
complex interactions between source emissions, 
meteorology, and mainly due to slowdown of 
anthropogenic activities. 

Relation between stringency measures and air 
pollution 

Regression models (Table 3) were used to explore 
the association between local meteorological 
factors, stringency index and air quality using 
ArcGIS. The best fit model was for PM10 and 
NO2 with adjusted R2 of  0.61 implying a good 
interrelation within estimated and predicted PM10 
concentrations. This was followed by CO with an 
adjusted R2 value of 0.57, 0.49 for NH3 and 0.23 
for SO2. This indicates that factors other than those 
considered in the model play a vital role in SO2 and 
NH3 concentrations. Electricity generation during 
lockdown period was allowed to function under 
the essential service category which contributes to 
SO2. Hence the imposition of stringency measures 
did not have much impact on SO2 concentrations. 
We used a stepwise OLS regression model which 
eliminated wind speed from NO2, implying that 
wind speed does not have a strong impact on NO2 
concentration. 

Coefficients of most of the variables were significant 
and in the expected direction. As expected, the 
results indicate a negative relationship between air 
pollutants and stringency index. The coefficient of 
stringency index is statistically significant and in the 
range of -0.003 to -0.007 indicating that a 10-point 
increase in the stringency index results in 3-7 % 
reduction in levels of the five air pollutants.

Table 3. Regression models to explain effect of stringency index on air pollutants

 Ln (PM10) Ln (NO2) Ln(SO2) Ln (NH3) Ln (CO) 

Constant 8.509 5.725 2.960 2.885 2.607 

Lag_pollutant .124 .392 .338 .534 .230 

Temperature -.067 -.091 -.048 -.085 -.075 

Relative Humidity -.035 -.019 .006 .015 -.008 

Wind Speed .041 - -.061 -.112 -.048 

Stringency Index -.003 -.003 -.004 -.004 -.007 

Adjusted R2 0.606 0.608 0.230 0.491 0.570 

Durbin-Watson 1.991 1.353 2.070 1.795 1.734 
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Effect of stringency measures (OXCGRT) on 
pollutants

We analysed the effect of stringency measures 
on pollutants (Fig. 8.) using two scenarios. 
The first scenario was the percent change 
in the six criteria pollutants with respect to 
No-lockdown (before stringency measures 
were implemented) and the second scenario 
was comparison in change with complete 
lockdown (100% stringency measures were 
implemented). The scenario one results show 
a decline among all the pollutants except SO2 
during most of the sub-phases as compared 
to the no lockdown scenario. This indicates 
that stringency measures of different strength 
helped in decline of air pollutants and improve 
air quality. However, the opposite effect was 
seen in SO2 which shows an increase despite 
lockdown measures. This indicates that the 
stringency measures had very little or no impact 
in reducing the SO2 concentrations.  

In scenario two, compared to the complete 
lockdown scenario all the pollutants have 
shown an increase during most of the sub-
phases of the stringency measures. We found 
reduction of some pollutants during EX1, VH1, 
H2, EX2, VH3, EX3, VH4, H3 and VH5 sub-
phases compared to the complete lockdown 
period. 

Results of both the scenarios clearly indicate 
that though there is a varying degree, the five 
pollutants PM10, PM2.5, NO2, NH3 and CO 
are impacted by the imposition of lockdown 
measures. Nature of economic activities in 
a city determines the range of air quality 
improvement due to lockdown measures 
[7]. Hence, implementation of correct 
stringent policy measures can help reduce the 
pollutants. 

We analysed the overall impact of stringency 
phases on air pollutants compared to No 
lockdown phase (Fig. 9.). A substantial 
reduction was observed in average PM10, PM2.5, 
NO2, and CO during all the phases of stringency 
measures. Ammonia also showed reduction in 

concentration except during M phase where it 
recorded an increase in concentration. Except 
for the complete lockdown phase SO2 increased 
in all the phases, indicating very little impact 
of stringency measures on SO2 concentration. 
This indicates that the pollutants are highly 
dependent on anthropogenic activities and 
the air quality can be improved by imposing 
appropriate policy measures. 

We estimated the maximum and minimum 
impacts during the two and a half year 
COVID-19 stringency measures on air pollutant 
concentrations in Mumbai city. Compared 
to no lockdown phase (1st January 2020 to 
29th January 2020) a maximum reduction 
throughout the COVID-19 stringency phases 
(30th January 2020 to 21st August 2022) were 
53.8%, 72.7%, 82.6%, 28.4%, 52.2% and 
49.1% for PM10, PM2.5, NO2, NH3 and CO 
during Complete Lockdown (CLD) or Extreme 
(EX) phases. While the maximum increment 
observed was during the medium phase for all 
pollutants except SO2 (phase high). This asserts 
that SO2 is not affected much by meteorology 
or stringency measures and that NO2 followed 
by PM10 and PM2.5 were highly meteorology 
and stringency index dependent. Thus, it can 
be concluded that the COVID-19 indirectly 
helped in improving air quality for Mumbai 
city, a boon in disguise and that appropriate 
mitigation measures can help in reducing air 
pollution drastically. 

There is always a level of uncertainty in 
modelling studies which can be addressed only 
through more research [24]. The study has 
some limitations, we could not include some 
important determinants of air pollution such as 
land-use pattern, source apportionment studies, 
role of individual SI indicators on air quality, 
due to data and time confines. This could have 
enhanced our understanding on the impact 
of stringency measures on air quality and 
improved the SO2  and NH3 regression models. 
We recommend more studies in this context 
to fill the gaps and provide a comprehensive 
understanding on the impact of SI on air quality.
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Fig. 8. Percent change in criteria pollutants during different phases of SI (a) percent change compared to no-
lockdown period (SI-0) (b) percent change compared to complete lockdown period (SI-100)

Fig. 9. Overall effect of stringency phases on air pollutants compared to no lockdown phase
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Conclusion

This study estimated the spatio-temporal 
variations of criteria air pollutants and the impact 
of stringency measures on air pollution using a 
comprehensive two-and-a-half-year COVID-19 
period dataset for megacity, Mumbai. We 
identified particulate matter to be the highest 
contributor to poor AQI. In India, one of the 
foremost risk factors for the mortality and 
morbidity burden is exposure to Particulate Matter 
(PM2.5) [25]. Hence to reduce the health impacts 
on people of Mumbai, we recommend to focus 
specific mitigation measures targeting particulate 
matter to be implemented urgently. Our temporal 
analysis indicated that seasonality significantly 
influenced the pollution concentrations except 
SO2. Winter was the worst period while monsoon 
was the best. 

We conducted a hotspot analysis of seasonal AQI 
to identify the regions of high and low pollution 
areas in Mumbai. Central Mumbai wards K/W, 
K/E, L, N, H/E, H/W, M/E and M/W showed a 
significant hotspot clustering of 99% in all the 
seasons while northern wards R/N, R/C and R/S 
and Colaba- A ward in the south showed coldspot 
clustering with 99% significance. The existance 
of coldspots in the northern wards could be related 
to the Sanjay Gandhi National Park. It highlights 
the importance of green cover in air pollution 
reduction. Green infrastructure can play a crucial 
role in mitigating urban air pollution [24]. Low-
level hedges improve air quality in street canyons 
while for streets/open roads green walls and roofs 
are more effective. Hence, in the central Mumbai 
wards we recommend to develop a strong green 
infrastructure to mitigate pollution. 

Since the industrial revolution for the first time 
the suspension activities during COVID-19 
lockdown gave the atmospheric environment 
time to recover due to the absence of industrial 
air pollution [13]. Due to the lockdown, we 
could comprehend the impact of anthropogenic 
activities on overall air quality. In concordance 
with previous studies, a drastic reduction was 
observed for all pollutants during complete 

lockdown period. The most prominent reductions 
during the COVID-19 stringency sub-phases 
were observed during VH5 for (10.59 µg/m3) 
PM10, VH1 for (7.24 µg/m3) PM2.5, VH5 for (1.14 
µg/m3) NO2, EX2 and EX3 for (1.06 µg/m3) SO2, 
EX3 for (1.56 µg/m3) NH3, EX3 for (0.13 mg/m3) 
CO. Sub-phases VH1, VH4, H3, VH5 and a part of 
H4 coincided with monsoon season. Sub- phases 
NLD, part of L1, part of M2, H4, VH6, H5 and 
part of M3 coincided with winter season. Though 
the most stringent phase was CLD (complete 
lockdown phase) the lowest particulate matter 
concentrations were recorded during VH5 and 
VH1 which coincided with the monsoon season. 
The highest mean concentrations throughout the 
COVID-19 pandemic period were recorded during 
the sub-phases H5 for (273.29 µg/m3) PM10, H5 
for (89.09 µg/m3) PM2.5, NLD for (78.14 µg/m3) 
NO2, H5 for (55.44 µg/m3) SO2, VH6 for (56.60 
µg/m3) NH3 and M3 for (1.32 mg/m3) CO. All of 
which were during the winter season. Hence, this 
analysis reconfirms the impact of meteorology on 
pollutant concentrations. 

The relationship between air quality, meteorology 
and stringency index was explored using the OLS 
regression. PM10, NO2 and CO were more affected 
by SI variations than NH3 and SO2. The regression 
models varied in R2, 0.23 for SO2, 0.49 for NH3, 
0.57 for CO, and 0.61for PM10 and NO2. They 
indicated an inverse relationship with stringency 
index for the five pollutants. A similar inverse 
relation was found between temperature and 
windspeed. The coefficient of stringency index 
was in the range of -0.003 to -0.007 indicating that 
a 10-point increase in the stringency index results 
in 3-7 % reduction in levels of air pollutants. The 
study has some limitations, we could not include 
some important determinants of air pollution such 
as land-use pattern, source apportionment studies 
due to data confines. This could have enhanced 
our understanding on the impact of stringency 
measures on air quality and improved the SO2 
and NH3 models. Future studies could examine 
the impact of individual policies on air quality 
and help in identifying the most effective ones. 

We estimated a substantial reduction in average 
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PM10, PM2.5, NO2, NH3 (except medium phase) and 
CO during all the phases of stringency measures 
meanwhile SO2 showed an increase during the 
same period. The maximum percent reduction 
observed was 53.8%, 72.7%, 82.6%, 28.4%, 
56.5%, and 72.0% for mean PM10, PM2.5, NO2, 
NH3, and CO during complete lockdown (CLD) 
or extreme (EX) phases. With the exception to SO2 
(high phase), all pollutants exhibited maximum 
increment during the medium phase. Major 
sources contributing to PM10 concentrations 
in Mumbai are dust (35%), Transport (17%), 
Waste burning (16%), SIA (15%), Industries 
(13%) and Marine (4%). Dust comprises of 
particles from unpaved roads, pavements, wear 
and tear of tyres, brakes and materials from the 
roads and street furniture [26]. While industries 
and automobiles were the main sources of 
NO2. Depending upon the SI, the strict controls 
influenced all these anthropogenic activities 
hence the concentrations of PM and NO2 reduced 
drastically. On the other hand, Vehicles, power 
plants and fertilizer factories were the sources of 
SO2 and NH3 respectively. They were operational 
during lockdown period and hence there was little 
impact of SI on SO2 and NH3. Though SO2 was not 
largely affected by the stringency measures, the 
decrease observed during the COVID-19 phases 
compared to NLD could be attributed to drop in 
emissions from Power Plants (PP). The lockdown 
caused shutdown of all industrial activities and 
thus reducing the power demand from PP. 

In conclusion, several air pollution mitigation 
measures exist in India which includes policies 
to control vehicular emissions, industrial 
emissions, dust from roads and construction-
demolition activities. The NCAP (National Clean 
Air Programme) established by the government 
of India has outlined source and sector specific 
mitigation measures. Despite this, there remains a 
serious public health concern in cities like Mumbai 
due to poor AQI. The mean concentrations of 
PM10 and PM2.5 surpassed the WHO standards 
by 36% and 43% even during CLD phase. This 
indicates that even the most stringent regulations, 
in conjugation with favourable meteorology 

(summer and monsoon) were unable to assist in 
meeting the WHO’s PM10 and PM2.5 standard of 
45 µg/m3 and 15 µg/m3 respectively. Hence, long-
term mitigation measures should be implemented 
to tackle this. We advise to include green designing 
and sustainable development strategies like green 
infrastructure of green walls around building 
surfaces and structures such as bridges, fly-overs, 
retaining walls, and noise barriers. They can help 
reduce air pollution 95% more compared to the 
absence of green walls [24]. 

Meanwhile, to rapidly reduce mean PM10 levels 
below the CPCB standards of 100 µg/m3, SI (≥ 80) 
of very high and above should be implemented. 
The specific policy responses must be atleast in 
the scale of three for closing schools, two for 
closing workplaces, two for cancelling public 
events, four for restricting the size of gatherings, 
one for closing public transport, two for requiring 
people to stay at home and two restricting internal 
movements and three for travelling abroad. This 
indicates that the maximum value of stringency 
for school closing, cancelling public events, 
restrictions on gathering size and restrictions on 
internal movement must be imposed to rapidly 
confine the PM10 concentrations below the 100 
µg/m3 CPCB threshold and reduce impact on 
health. The authors are aware that implementing 
the stringency measures (≥ 80) of very high 
and above would not be economically feasible. 
However, for a rapid emergency response to 
high PM pollution we suggest implementing the 
recommended stringent actions for a short period. 
Simultaneously, continuous implementation of 
long-term mitigation measures for reduction will 
help keep the background concentrations low. 
The findings of this study have important policy 
implications and provides significant pointers for 
public health management.

Limitations of the study

Air pollution is a very complex issue with multiple 
factors affecting the air quality. The study has 
a few limitations, we could not include some 
important determinants of air pollution such as 
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land-use pattern, source apportionment studies, 
role of individual SI indicators on air quality, 
due to data and time confines. This could have 
enhanced our understanding on the impact of 
stringency measures on air quality and improved 
the SO2 and NH3 regression models. For advanced 
future work, a broader approach including these 
variables may be explored. 
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