
Journal of Air Pollution and Health (Spring 2017); 2(2): 109-118

Original Article

C O R R E S P O N D I N G  A U T H O R :

dianatitilaki@gmail.com
Tel:  ( +98 11 ) 33543081
Fax:  ( +98 11) 33542473

A B S T R A C T:

Introduction: Large amount of CO2 emissions from combustion of fossil 
fuels will lead to environmental crisis. One method for removing CO2 is ad-
sorption by modified adsorbents. In this study, mesoporous silica, MCM- 41, 
modified by mono- ethanolamine, was used for CO2 removal from exhaust 
gases of methane combustion. 
Materials and methods: MCM- 41 was synthesized by using tetraethyl 
orthosilicate (TEOS) as silica source, according to classic method. MCM- 
41 was modified with different amounts (25, 50 and 75 %) of monoethanol 
amine (MEA) by impregnation method. Amine modified MCM- 41 were used 
in filters and adsorption experiments were conducted to determine adsorption 
capacity by passing CO2 in different concentrations (2000 -5000 ppm), differ-
ent flow rates (100 – 400 ml/min), and different temperatures (25, 55 and 90 
°C) individually. CO2 was analyzed by ND IR CO2 analyzer. 
Results: Time to reach adsorption equilibrium of carbon dioxide on to exam-
ined adsorbents was about 10 h. Maximum carbon dioxide adsorption capac-
ity for MCM- 41 was determined 5.0 mg/g. Maximum adsorption rate was 
due to MCM41- MEA 50 % with adsorption capacity of 50 mg/g for CO2 
concentration of 5000 ppm. By increasing temperature from 25 to 90 °C, 
adsorption capacity was increased only about 10 %. Maximum CO2 adsorp-
tion capacity was achieved at gas flow rate of 100 mL/min, and by increasing 
flow rate, capacity was decreased. By increasing amine loaded on MCM, CO2 
adsorption capacity was decreased. 
Conclusions: Modification of MCM- 41 using monoethanol amine by simple 
impregnation method will result in the production of adsorbents with a higher 
absorption capacity for carbon dioxide removal. By using amine modified 
MCM- 41, it is possible to remove carbon dioxide from exhaust gases of 
methane combustion.
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INTRODUCTION 

Global warming and climate change have arisen 
due to the massive release of greenhouse gas 
emissions from industrial activity in the twen-
tieth century. Carbon dioxide is one of the most 

important greenhouse gases that enters more 
than others to the earth’s atmosphere.  Accord-
ing to official reports, carbon dioxide emis-
sions in 2015 were more than 35 gigaton [1]. 
The current concentration of carbon dioxide in 
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the atmosphere is more than 400 ppm, which 
is considerably higher than before the indus-
trial revolution (280 ppm), and the trend of in-
creasing its concentration with steep gradients 
continues. About half of the carbon dioxide re-
leased into the earth’s atmosphere comes back 
to the ground from paths such as absorption in 
the ocean and absorption by the plants, but its 
remained that amount in the air is so high there-
fore, it causes an annual increase of about 2 ppm 
in the earth’s atmosphere [2]. Each ppm of car-
bon dioxide in the atmosphere is equivalent to 
2.1 gigaton of pure carbon and 7.7 gigaton of 
carbon dioxide [3]. Therefore, to reduce carbon 
dioxide emissions to the atmosphere, the use of 
renewable energy sources, the use of alterna-
tive fuels and the development of clean technol-
ogy for use in the current century are planned. 
But with all these efforts, fossil fuels will still 
be used in the decades to come. Therefore, ef-
forts are being made to reduce carbon dioxide 
emissions into the atmosphere and to stabilize 
atmospheric carbon dioxide concentrations us-
ing carbon dioxide adsorption and carbon diox-
ide storage (CCS) techniques proposed by the 
researchers [4 – 7]. Different technologies have 
been proposed for removal of carbon dioxide, 
including: physical absorption [8, 9] chemical 
absorption and [10, 11], physical adsorption 
[12, 13]. But the application of these methods to 
remove carbon dioxide from combustion gases 
in industries has its own limitations. Chemical 
absorption by alkanolamine solutions are in the 
group of the best carbon dioxide removal tech-
nologies has been proposed before 2030 [14], 
but it has limitations such as high corrosion, 
high energy consumption for recovery, and the 
need for a huge amount of absorbent material 
[15]. The method of adsorption of carbon diox-
ide by adsorbent at high pressure and then its 
desorption by reducing pressure is one of the 
methods. In this method, the rate of adsorption 
from the gas phase to the adsorbent pore is 3 
times greater than the transition to the liquid in 
the chemical absorption method [16].  Howev-
er, the influence of the adsorbents of this group 

(such as activated carbon and zeolite) by other 
gases, and consequently the reduction of carbon 
dioxide separation factor, is one of the limita-
tions of this method. Another problem is the re-
duction of the adsorption capacity at low pres-
sures (0.1 and 0.2 atmospheres) [14, 17, 18], as 
well as the rapid reduction of adsorption capac-
ity at ambient temperatures20  ,9] ]. One of the 
solutions proposed to eliminate problems in the 
adsorption method is the adsorbent modifica-
tion with amine- containing compounds [21]. 
Amine modification of the adsorbent is done by 
two methods including amine impregnation and 
amine grafting [21, 22], which has been consid-
erably focused on the method of impregnation 
due to its ease of conduction and the increase 
in adsorption capacity23]   ]. In addition, toxic 
solvents such as toluene, which are used in the 
traditional method of making MCM-41 grafted 
with amine, are not required in this method [24, 
25].  In the present study, CO2 adsorption capac-
ity of MCM- 41 before and after modification 
with monoentanolamine under normal condi-
tions of methane combustion has been compared. 
Parameters such as temperature, amine loading, 
inlet CO2 concentration, feed flow rate, as well 
as application of nitrogen gas in adsorbent re-
generation have been investigated. 

MATERIALS AND METHODS

Materials
Cetyltrimethylammonium bromide (CTAB), Tet-
raethoxysilane (TEOS), Monoethanolamine and 
Ammonium hydroxide were analytical grade 
from Merck company.

Synthesis of MCM – 41
2.4 g Cetyltrimethylammonium bromide (CTAB) 
was added to 120 g of deionized water. For com-
plete mixing, a magnetic stirrer was used. When 
the solution has become clear, 10 ml of 25 % 
aqueous ammonia was added, stirred for 10 min.  
Then 10 ml of tetraethoxysilane (TEOS) was 
added and again stirred overnight. The synthe-
sized white precipitate after filtration and wash-
ing with ethanol and distilled water, finally was 
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calcined at 550 °C for 5 h [26].

Synthesis of MCM - 41 impregnated with MEA
Certain volumes of MEA were added to certain 
amounts of methanol and were stirred for 30 min 
(volumes of MEA and amounts of methanol were 
calculated according to amounts of amine (25 
%, 50 % and 75 %) which were considered for 
loading on MCM - 41). After stirring, for each 
mixture, separately, 3 g MCM - 41 was added 
and they were sealed and vigorously stirred over-
night. Finally obtained products were filtered and 
the remaining solids were dried at 50 °C for 8 h 
[23].

CO2 adsorption measurements
First, combustion gases of methane were collect-
ed by the collection hopper, then were directed by 
connection tube to the adsorbent column (adsor-
bent column was a copper tube by 20 cm height 
and 1.5 cm diameter). In order to set up the air 
flow on specified values, adsorbent column was 
connected by a tube to a rotameter and then to the 
suction pump. Finally, the concentration of CO2, 
which left the adsorbent column, was measured 
by TES 1370 ND IR CO2 analyzer. In order to 
compare the adsorption capacity of MCM - 41، 
MCM – 41 - MEA- 25 % ،MCM- 41- MEA- 50 
% and MCM- 41- MEA- 75 %, first, evacuation 

of the adsorbents from impurities was carried out 
through nitrogen gas injection, and then 3 g of 
each adsorbent was placed in copper tube serves 
as filter. Finally, the CO2 adsorption capacity of 
each adsorbent was measured in different tem-
peratures, inlet CO2 concentrations and feed flow 
rates. Temperatures were provided by placing the 
filter in the water bath equipped with a thermo-
stat, feed gas flow rates were set up by rotameter, 
and the inlet CO2 concentrations were provided 
by changing the flame position.
CO2 adsorption capacity for each adsorbent, is 
calculated by following Eq. (1):

                      (1)

q (mg/g): CO2 adsorption capacity; C0 (ppm): in-
let CO2 concentration; Ce (ppm): outlet CO2 con-
centration at saturation time; Q (l/min): flow rate; 
W (g): adsorbent weight.
Since low inlet CO2 concentrations, prolonged 
the adsorbent saturation process, in order to bet-
ter show saturation process during long period of 
adsorption, CO2 adsorption amount by each ad-
sorbent was calculated at the end of each hour, 
and simultaneously the CO2 adsorption capacity 
of each adsorbent was reported by calculating the 
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cumulative adsorption at the end of the saturation 
time [6, 27, 28].
Adsorbent regeneration method
After the saturation process, regeneration experi-
ments were carried out through injection of nitro-
gen gas into each saturated adsorbent for 3 h.

RESULTS AND DISCUSSION

Effect of Amine loading on adsorption capacity
By using unmodified MCM- 41, carbon dioxide 
adsorption capacity was a little amount, as shown 
in Fig. 2.  It was stated by Le et al. (2014) that, 
in physical adsorbents such as activated carbon 
and zeolite, water molecules and other gases, 
are adsorbed on adsorbent pores in competition 

RESULTS AND DISCUSSION 

Effect of Amine loading on adsorption capacity 

By using unmodified MCM- 41, carbon dioxide adsorption capacity was a little amount, as 
shown in Fig. 2.  It was stated by Le et al. (2014) that, in physical adsorbents such as activated 
carbon and zeolite, water molecules and other gases, are adsorbed on adsorbent pores in 
competition with carbon dioxide, so carbon dioxide separation factor of these type of adsorbents 
are very low [29, 30], also It was claimed by Goyal et al. (2005)  that, in activated carbon, 
adsorption is physical and adsorbate molecules are accumulated in several layers on the 
adsorbent surface by van der Waals forces. At high relative humidity conditions, pores on the 
surface of activated carbon are filled with water through capillary effect [31]. But in chemical 
adsorption, according to Nikpey et al. (2012), due to the electron sharing between adsorbate 
molecules and adsorbent surfaces, which led to the formation of a stronger bond in comparison 
with van der Waals forces, adsorption, is only limited to specific groups of molecules which are 
able to share electrons  [32]. 
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with carbon dioxide, so carbon dioxide separa-
tion factor of these type of adsorbents are very 
low [29, 30], also It was claimed by Goyal et al. 
(2005)  that, in activated carbon, adsorption is 
physical and adsorbate molecules are accumu-
lated in several layers on the adsorbent surface 
by van der Waals forces. At high relative humid-
ity conditions, pores on the surface of activated 
carbon are filled with water through capillary ef-
fect [31]. But in chemical adsorption, according 
to Nikpey et al. (2012), due to the electron shar-
ing between adsorbate molecules and adsorbent 
surfaces, which led to the formation of a stronger 
bond in comparison with  van der Waals forces, 
adsorption, is only limited to specific groups of 

Fig. 2. CO2 adsorption process by MCM- 41, MCM- 41- MEA- 25 % ،MCM-41-MEA- 50 % and
 MCM-41- MEA-75 % in 25 0C

Fig. 3. Effect of amine loading on CO2 adsorption capacity of modified MCM- 41in 25, 55 and 90 0C
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molecules which are able to share electrons  [32].
Effect of amine loading on adsorption capacity 
of modified MCM- 41 have also been shown in 
Fig. 3. In a study conducted by song et al., it has 
reported that when PEI loading on MCM- 41 is 
higher than 30 wt. %, pore filling with PEI will 
begin. At PEI loading of 50 wt. %, MCM- 41- 
PEI with an adsorption capacity of 246 mg/g, 
showed the highest adsorption capacity, which 
was 30 times more than MCM- 41 and 2.3 times 
more than pure PEI 33  ,19]  ]. Also it has been 
noted that the pore volume of MCM- 41 is 1 ml/g 
and the PEI density is about 1 g/ml, so the maxi-
mum PEI that can be loaded into the MCM- 41 
pores is 50 %. When the PEI loading was less 

than 50 wt %, impregnation with PEI doesn’t oc-
cur for all MCM- 41 pores, so the adsorption ca-
pacity decreases. And when the PEI loading ex-
ceeds 50 wt. %, PEI is coated on the outer surface 
of the MCM- 41, so the MCM- 41 pore volume 
and subsequently the adsorption capacity of ad-
sorbent, decreases [32, 33].

Effect of temperature on adsorption capacity
As shown in Fig. 4, increase in temperature, in-
creases the adsorption capacity, but on the con-
trary, the adsorbent saturation process is short-
ened. Direct relationship between temperature 
and adsorption capacity of modified MCM- 41 is 
also illustrated in Fig. 5.

  

Fig. 4. CO2 adsorption process by MCM- 41- MEA- 25 % in 25, 55 and 90 0C 

 

 

Fig. 5. Effect of temperature on CO2 adsorption capacity in MCM- 41- MEA- 25% ،MCM- 41- MEA-50 
% and MCM- 41- MEA- 75 % 

Effect of inlet CO2 concentration on adsorption capacity 

Direct relationship between inlet CO2 concentration and adsorption capacity of MCM- 41- MEA-
50 % in 25 0C is illustrated in Fig. 6.

0

5

10

15

20

25

30

0 2 4 6 8 1 0 1 2 1 4 1 6

A
ds

or
pt

io
n 

ca
pa

ci
ty

 (m
g/

g)

Time (h)

25 C

55C

90C

0

5

10

15

20

25

30

35

40

2 5 5 5 9 0

A
ds

or
pt

io
n 

ca
pa

ci
ty

 (m
g/

g)

MCM-41-MEA-25%

MCM-41-MEA-50%

MCM-41-MEA-75%

Temperature

  

Fig. 4. CO2 adsorption process by MCM- 41- MEA- 25 % in 25, 55 and 90 0C 

 

 

Fig. 5. Effect of temperature on CO2 adsorption capacity in MCM- 41- MEA- 25% ،MCM- 41- MEA-50 
% and MCM- 41- MEA- 75 % 

Effect of inlet CO2 concentration on adsorption capacity 

Direct relationship between inlet CO2 concentration and adsorption capacity of MCM- 41- MEA-
50 % in 25 0C is illustrated in Fig. 6.

0

5

10

15

20

25

30

0 2 4 6 8 1 0 1 2 1 4 1 6

A
ds

or
pt

io
n 

ca
pa

ci
ty

 (m
g/

g)

Time (h)

25 C

55C

90C

0

5

10

15

20

25

30

35

40

2 5 5 5 9 0

A
ds

or
pt

io
n 

ca
pa

ci
ty

 (m
g/

g)

MCM-41-MEA-25%

MCM-41-MEA-50%

MCM-41-MEA-75%

Temperature

Fig. 4. CO2 adsorption process by MCM- 41- MEA- 25 % in 25, 55 and 90 0C

Fig. 5. Effect of temperature on CO2 adsorption capacity in MCM- 41- MEA- 25% ،MCM- 41- MEA-50 % and MCM- 
41- MEA- 75 %



R.A. Dianati Tilaki et al., Carbon dioxide removal ...114

http://japh.tums.ac.ir

It was reported by klepel et al. (2005), that CO2 
adsorption by 13X zeolite modified with 50 % 
monoethanolamine, at 75 °C is higher than 50 °C. 
because at 50 ° C, a slight physical adsorption 
with chemical adsorption occur on active sites, 
but at 75 ° C, due to the full predominance of 
chemical adsorption, more adsorption sites are 
activated [34, 35]. It was also claimed by Jadhav 
et al. (2007), that when the adsorption tempera-
ture, increases, chemical adsorption will predom-
inant, and amine-modified zeolite, adsorbs more 
carbon dioxide in comparison with unmodified 
zeolite [36]. Siriwardane et al. (2001) reported 
similar results and also noted that increasing tem-
perature, will shortened adsorption process37] ].

 Effect of inlet CO2 concentration on adsorption 
capacity
Direct relationship between inlet CO2 concentra-
tion and adsorption capacity of MCM- 41- MEA-
50 % in 25 0C is illustrated in Fig. 6.
In some studies, it was reported that, for unmodi-
fied and modified bone ash, increasing concen-
tration of formaldehyde, reduces the saturation 
time, but the adsorption capacity increases. They 
claimed that, by increasing inlet concentration 
of formaldehyde, more formaldehyde molecules 
would be available for the adsorbent so the rate 
of emission and adsorption of adsorbates on the 
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by other researchers on acetone vapor [41]. Also, 
as shown in Fig. 6, increasing inlet CO2 concen-
tration produced from combustion of methane, 
increases moisture content. Many researchers re-
ferred to the positive effect of moisture on carbon 
dioxide capture by MCM- 41- PEI and noted that 
the CO2 adsorption capacity in wet conditions is 
more than dry conditions, although in the pres-
ence of moisture, water is also adsorbed. Xu’s 
team pointed out that the interaction between 
carbon dioxide and PEI may change in the pres-
ence of water. In dry conditions, the main reac-
tion between amine and carbon dioxide leads to 
the formation of carbamate which limits the CO2 
adsorption capacity to 1 mol of carbon dioxide 
per 2 moles of amine group.

But in the presence of moisture, carbamate, after 
reaction with carbon dioxide and water, forms bi-

Fig. 6. Effect of inlet CO2 concentration on CO2 adsorption capacity of MCM- 41- MEA- 50 % in 25 0C
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carbonate and amine group. Amine group, inde-
pendently, after reaction with carbon dioxide and 
water, forms bicarbonate. So in the presence of 
water, 1 mole of amine groups can adsorb 1 mol 
of carbon dioxide. 

So under normal conditions of methane combus-
tion, increasing the adsorption capacity due to 
increased CO2 concentration, can be attributed 
to the simultaneous effect of both high inlet CO2 
concentration and moisture content parameters.

Effect of feed flow rate on adsorption capacity
As illustrated in Fig. 7, by increasing flow rate, 
CO2 adsorption capacity decreases. Many re-
searchers noted that, in low flow, enough time for 
the chemical interaction between carbon dioxide 
and the modified adsorbent bed, is provided. On 
the contrary, by increasing in flow rate, more CO2 
molecules will leave adsorbent column without 
interacting with the adsorbent molecules in col-
umn [43]. Other researchers reported a similar 
results on activated carbon modified with (AMP 
2-) amino- 2- methyl- 1- propanol [44].

R2NCOO-  + 2 H2O + CO2                              R2NH2
+ + 2 HCO3

- 

CO2 + RNH2 + H2O                          RNH3
+ + HCO3

- 

CO2 + R2NH + H2O                          R2NH2
+ + HCO3

- 

CO2 + R3N + H2O                          R3NH+ + HCO3
-  [42] 
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activated carbon modified with AMP and MEA, and significant reduction in adsorption capacity 
occurs. Because in unmodified activated carbon, carbon dioxide molecules only are adsorbed on 
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Regeneration results
In this study, 3 h nitrogen injection for the regen-
eration process didn’t show satisfactory results. 
Many researchers reported that, for unmodified 
activated carbon, 4 h nitrogen injection at 60 ml/
min at room temperature, leads to adsorbent re-
generation. But this method is not suitable for 
activated carbon modified with AMP and MEA, 
and significant reduction in adsorption capacity 
occurs. Because in unmodified activated carbon, 
carbon dioxide molecules only are adsorbed on 
the adsorbent pores through the weak van der 
Waals forces, but in modified activated carbon, 
strong chemical interaction occurs between the 
carbon dioxide and modified adsorbent bed, so 
high energy is needed for bond breaking [45]. 
Similarly, it was claimed by other researchers 
that, in unmodified adsorbents, after regeneration 
process, a slight reduction in adsorption capac-
ity is observed but on the contrary, in modified 
adsorbent, a significant reduction in adsorption 
capacity occurs [44]. 
But some researchers used a different method 
and achieved satisfactory results. They placed 
the saturated MCM- 41- MEA in a vacuum dry-
ing oven at 120 °C for 8 h and then repeated CO2 
adsorption experiments. Until the fifth cycle, they 
didn’t observe any changes on adsorption process 
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but from the sixth cycle, the changes were clearly 
seen. Eventually, the research team introduced 
MCM- 41 modified with monoethanolamine, as 
a sustained adsorbent during various adsorption-
desorption operations23] ]. 

CONCLUSIONS 

Results showed that impregnation of MCM- 41 
by monoethanol amine, increased CO2 adsorp-
tion capacity significantly. Temperature did not 
play an important role in the adsorption of car-
bon dioxide on to examined sorbents. Optimum 
amine required for modification of MCM 41 was 
fifty percent by weight. Modified MCM- 41 by 
monoethanol amine can be used as an adsorbent 
in removing carbon dioxide from exhaust gases 
of methane combustion.
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