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Introduction: Photocatalytic oxidation of gaseous pollutants in differential 
reactors is simulated using computational fluid dynamics.
Materials and methods: The momentum equation and pollutant transport 
are solved by using ANSYS Fluent. The SIMPLE algorithm is used to treat 
the pressure-velocity coupling. The laminar flow and low Reynolds k−ε mod-
els are used to describe turbulence.
Results: Velocity field distribution and degradation efficiency of different 
models at various flow rates were obtained and compared with the experi-
mental data. The simulation results of degradation efficiency under different 
models are basically consistent. 
Conclusion: Although low Reynolds k-ε models have better simulation re-
sults for high inlet flow rates, in terms of computation complexity, laminar 
flow is recommended for simulation.
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Introduction
Photocatalytic oxidation technology has attracted 
significant attention in the field of pollutant con-
trol [1, 2]. Under the illumination of UV light, 
photocatalytic reaction is activated through the 
absorption of photons with the energy greater 
than the band-gap energy, producing an electron–
hole pair [3–5]. A series of reduction and oxida-
tion reactions are followed transforming pollut-
ants into carbon dioxide and water.
Hydrodynamics plays an important role in pho-
tocatalytic reaction, which directly influences the 
transport of pollutants within the reactor. An ef-
fective methodology to understand the hydrody-
namics is computational fluid dynamics (CFD), 

in which the continuity and momentum equa-
tions are usually solved by using finite volume 
method. Annular reactors with simple geometry 
have been successfully simulated with laminar 
flow [6–8] and turbulent flow [9, 10]. For reac-
tors with multiple lamps or complex catalyst sur-
face, CFD simulations depict good ability adapt-
ing to complex internal configurations under the 
laminar flow [11–13]. When the catalyst exists 
as particles, multiphase flow was simulated in 
reactors in combination with suitable turbulence 
models [14–18]. In general, good agreement was 
obtained between the experimental data and the 
simulations for these laboratory-scale reactors.
When simulating the photocatalytic reaction in 
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laboratory scale reactors, the kinetic rate equa-
tion must be known, which is usually described 
by the Langmuir-Hinshelwood equation. The rate 
constants in the Langmuir-Hinshelwood equation 
are measured in differential reactors [6, 19–22]. 
Differential reactors are very small and contains 
a plane surface coated with the catalyst. By us-
ing the assumption of perfect mixing, the rate 
constants can be obtained from the experiment in 
differential reactors [19, 22]. On the other hand, 
laminar flow [23] or turbulent flow [20] were 
also used to simulate differential reactors and 
evaluate rate constants. However, no assessment 
on the effect of laminar and turbulent flows was 
conducted.
The simulation of differential reactors is crucial 
to determine the rate constants. In this work, 
laminar flow and several low-Re k − ε turbulence 
models are used to simulate a differential reactor. 
The aim is to determine the suitable model for 
the evaluation of rate constants of photocatalytic 
reactions in differential reactors.

Materials and methods

Flow equations
For the photocatalytic reaction in differential re-
actors, the air is usually used as carrier gas. Air 
flow in the reactor obeys the conservation law of 
mass and momentum. The aim of differential re-
actors is to measure the reaction rate. Therefore, 
air flow is usually maintained at steady state. Un-
der the steady condition, the continuity equation 
and Navies-Stokes equation can be written as fol-
lows:

where ρ is the fluid density, and xj and uj are the 
coordinate component and velocity component in 
the j direction, p is the pressure, µ is the fluid ki-
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where k is the turbulent kinetic energy, µt is the 
turbulent eddy viscosity.
For laboratory scale reactors, the near-wall tur-
bulence is of great importance because of low 
Reynolds number. Therefore, low-Re k − ε mod-
els are used to describe the turbulence effect. The 
transport equations of turbulent kinetic energy 
and its dissipation rate are written as follows

with

where Cµ, σk and σε are empirical constants, ε is 
the turbulent dissipation rate, fµ, f1 and f2
are dumping functions. D and E are near-wall 
correction terms for k and ε equations.
Several low-Re k − ε models have been devel-
oped, which are designated as ABID for Abid 
[24], LB for Lam and Bremhost [25], LS for 
Launder and Sharma [26], YS for Yang and Shih 
[27], AKN for Abe and Kondoh [28] and CHC 
for Hsieh and Chang [29]. Damping functions for 
these low-Re k − ε turbulence models are listed 
in Table 1.

Degradation equation of pollutants
Ethylene is selected as the model pollutant. After 

(3)

(4)

(5)

(6)

3  

−𝜌𝜌𝑢𝑢′�𝑢𝑢′� = 𝜇𝜇� �
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

+
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

� −
2
3
𝜌𝜌𝜌𝜌𝛿𝛿�� ( 3) 

where k is the turbulent kinetic energy, µt is the turbulent eddy viscosity. 
For laboratory scale reactors, the near-wall turbulence is of great importance because of low 
Reynolds number. Therefore, low-Re k − ε models are used to describe the turbulence effect. 
The transport equations of turbulent kinetic energy and its dissipation rate are written as follows 
 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐺𝐺� − 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌 ( 4) 

 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐶𝐶��𝑓𝑓�
𝜌𝜌
𝜌𝜌
𝐺𝐺� − 𝐶𝐶��𝑓𝑓�𝜌𝜌

𝜌𝜌�

𝜌𝜌
+ 𝐸𝐸 ( 5) 

with 

𝜇𝜇� = 𝐶𝐶�𝜌𝜌𝑓𝑓�
𝜌𝜌�

𝜌𝜌
 ( 6) 

 
where Cµ, σk and σε are empirical constants, ε is the turbulent dissipation rate, fµ, f1  and f2  

are dumping functions. D and E are near-wall correction terms for k and ε equations. 
Several low-Re k − ε models have been developed, which are designated as ABID for Abid 
[24], LB for Lam and Bremhost [25], LS for Launder and Sharma [26], YS for Yang and Shih 
[27], AKN for Abe and Kondoh [28] and CHC for Hsieh and Chang [29]. Damping functions 
for these low-Re k − ε turbulence models are listed in Table 1. 

 
Degradation equation of pollutants 
Ethylene is selected as the model pollutant. After entering the differential reactor, ethylene 
moves by the convection and diffusion. The governing equation of ethylene in the reactor is 
expressed by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  

−𝜌𝜌𝑢𝑢′�𝑢𝑢′� = 𝜇𝜇� �
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

+
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

� −
2
3
𝜌𝜌𝜌𝜌𝛿𝛿�� ( 3) 

where k is the turbulent kinetic energy, µt is the turbulent eddy viscosity. 
For laboratory scale reactors, the near-wall turbulence is of great importance because of low 
Reynolds number. Therefore, low-Re k − ε models are used to describe the turbulence effect. 
The transport equations of turbulent kinetic energy and its dissipation rate are written as follows 
 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐺𝐺� − 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌 ( 4) 

 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐶𝐶��𝑓𝑓�
𝜌𝜌
𝜌𝜌
𝐺𝐺� − 𝐶𝐶��𝑓𝑓�𝜌𝜌

𝜌𝜌�

𝜌𝜌
+ 𝐸𝐸 ( 5) 

with 

𝜇𝜇� = 𝐶𝐶�𝜌𝜌𝑓𝑓�
𝜌𝜌�

𝜌𝜌
 ( 6) 

 
where Cµ, σk and σε are empirical constants, ε is the turbulent dissipation rate, fµ, f1  and f2  

are dumping functions. D and E are near-wall correction terms for k and ε equations. 
Several low-Re k − ε models have been developed, which are designated as ABID for Abid 
[24], LB for Lam and Bremhost [25], LS for Launder and Sharma [26], YS for Yang and Shih 
[27], AKN for Abe and Kondoh [28] and CHC for Hsieh and Chang [29]. Damping functions 
for these low-Re k − ε turbulence models are listed in Table 1. 

 
Degradation equation of pollutants 
Ethylene is selected as the model pollutant. After entering the differential reactor, ethylene 
moves by the convection and diffusion. The governing equation of ethylene in the reactor is 
expressed by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  

−𝜌𝜌𝑢𝑢′�𝑢𝑢′� = 𝜇𝜇� �
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

+
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

� −
2
3
𝜌𝜌𝜌𝜌𝛿𝛿�� ( 3) 

where k is the turbulent kinetic energy, µt is the turbulent eddy viscosity. 
For laboratory scale reactors, the near-wall turbulence is of great importance because of low 
Reynolds number. Therefore, low-Re k − ε models are used to describe the turbulence effect. 
The transport equations of turbulent kinetic energy and its dissipation rate are written as follows 
 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐺𝐺� − 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌 ( 4) 

 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐶𝐶��𝑓𝑓�
𝜌𝜌
𝜌𝜌
𝐺𝐺� − 𝐶𝐶��𝑓𝑓�𝜌𝜌

𝜌𝜌�

𝜌𝜌
+ 𝐸𝐸 ( 5) 

with 

𝜇𝜇� = 𝐶𝐶�𝜌𝜌𝑓𝑓�
𝜌𝜌�

𝜌𝜌
 ( 6) 

 
where Cµ, σk and σε are empirical constants, ε is the turbulent dissipation rate, fµ, f1  and f2  

are dumping functions. D and E are near-wall correction terms for k and ε equations. 
Several low-Re k − ε models have been developed, which are designated as ABID for Abid 
[24], LB for Lam and Bremhost [25], LS for Launder and Sharma [26], YS for Yang and Shih 
[27], AKN for Abe and Kondoh [28] and CHC for Hsieh and Chang [29]. Damping functions 
for these low-Re k − ε turbulence models are listed in Table 1. 

 
Degradation equation of pollutants 
Ethylene is selected as the model pollutant. After entering the differential reactor, ethylene 
moves by the convection and diffusion. The governing equation of ethylene in the reactor is 
expressed by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  

−𝜌𝜌𝑢𝑢′�𝑢𝑢′� = 𝜇𝜇� �
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

+
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

� −
2
3
𝜌𝜌𝜌𝜌𝛿𝛿�� ( 3) 

where k is the turbulent kinetic energy, µt is the turbulent eddy viscosity. 
For laboratory scale reactors, the near-wall turbulence is of great importance because of low 
Reynolds number. Therefore, low-Re k − ε models are used to describe the turbulence effect. 
The transport equations of turbulent kinetic energy and its dissipation rate are written as follows 
 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐺𝐺� − 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌 ( 4) 

 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐶𝐶��𝑓𝑓�
𝜌𝜌
𝜌𝜌
𝐺𝐺� − 𝐶𝐶��𝑓𝑓�𝜌𝜌

𝜌𝜌�

𝜌𝜌
+ 𝐸𝐸 ( 5) 

with 

𝜇𝜇� = 𝐶𝐶�𝜌𝜌𝑓𝑓�
𝜌𝜌�

𝜌𝜌
 ( 6) 

 
where Cµ, σk and σε are empirical constants, ε is the turbulent dissipation rate, fµ, f1  and f2  

are dumping functions. D and E are near-wall correction terms for k and ε equations. 
Several low-Re k − ε models have been developed, which are designated as ABID for Abid 
[24], LB for Lam and Bremhost [25], LS for Launder and Sharma [26], YS for Yang and Shih 
[27], AKN for Abe and Kondoh [28] and CHC for Hsieh and Chang [29]. Damping functions 
for these low-Re k − ε turbulence models are listed in Table 1. 

 
Degradation equation of pollutants 
Ethylene is selected as the model pollutant. After entering the differential reactor, ethylene 
moves by the convection and diffusion. The governing equation of ethylene in the reactor is 
expressed by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  

−𝜌𝜌𝑢𝑢′�𝑢𝑢′� = 𝜇𝜇� �
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

+
𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥�

� −
2
3
𝜌𝜌𝜌𝜌𝛿𝛿�� ( 3) 

where k is the turbulent kinetic energy, µt is the turbulent eddy viscosity. 
For laboratory scale reactors, the near-wall turbulence is of great importance because of low 
Reynolds number. Therefore, low-Re k − ε models are used to describe the turbulence effect. 
The transport equations of turbulent kinetic energy and its dissipation rate are written as follows 
 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐺𝐺� − 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌 ( 4) 

 

𝜕𝜕�𝜌𝜌𝑢𝑢�𝜌𝜌�
𝜕𝜕𝑥𝑥�

=
𝜕𝜕
𝜕𝜕𝑥𝑥�

��𝜇𝜇 +
𝜇𝜇�
𝜎𝜎�
�
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�

� + 𝐶𝐶��𝑓𝑓�
𝜌𝜌
𝜌𝜌
𝐺𝐺� − 𝐶𝐶��𝑓𝑓�𝜌𝜌

𝜌𝜌�

𝜌𝜌
+ 𝐸𝐸 ( 5) 

with 

𝜇𝜇� = 𝐶𝐶�𝜌𝜌𝑓𝑓�
𝜌𝜌�

𝜌𝜌
 ( 6) 

 
where Cµ, σk and σε are empirical constants, ε is the turbulent dissipation rate, fµ, f1  and f2  

are dumping functions. D and E are near-wall correction terms for k and ε equations. 
Several low-Re k − ε models have been developed, which are designated as ABID for Abid 
[24], LB for Lam and Bremhost [25], LS for Launder and Sharma [26], YS for Yang and Shih 
[27], AKN for Abe and Kondoh [28] and CHC for Hsieh and Chang [29]. Damping functions 
for these low-Re k − ε turbulence models are listed in Table 1. 

 
Degradation equation of pollutants 
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expressed by: 
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where n is the outward normal direction at the boundary. The photocatalytic rate is usually 
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Eq. 10 should be realized in an iterated manner since the diffusion flux of ethylene to the wall 
changes during iteration. 
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Numerical simulation 
A rectangular reactor with the dimensions of 54.5 mm × 54.5 mm × 47.5 mm is studied, as shown 
in Fig. 1. A glass plate with a square hollow is positioned on the bottom of reactor. Catalysts are 
coated onto the bottom of hollow. Polluted gas enters into the reactor and is oxidized at the 
surface of catalyst. Some researchers measured the degradation efficiencies under different inlet 
flow rates and inlet concentrations [20] . ANSYS ICEM is used to discretize the computational 
domain, as shown in Fig. 2. Near the surface of catalyst, the grid is refined. The total number of 
mesh is 565,392. 
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The governing equations are solved by using ANSYS Fluent. SIMPLE algorithm is adopted to 
deal with pressure-velocity coupling. Convection terms are discretized by using the second- 
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The governing equations are solved by using AN-
SYS Fluent. SIMPLE algorithm is adopted to deal 
with pressure-velocity coupling. Convection terms 
are discretized by using the second- order upwind 
scheme. The concentration equation is described 
by using user defined scalar (UDS). The solution 
was considered convergent when the scaled resid-
uals for all equations are less than 10-6.
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At the inlet, volumetric flow rate and the con-
centration of pollutant are given. The selected 
inlet flow rates are 50 mL/min, 100 mL/min, 150 
mL/min and 250 mL /min and the correspond-
ing Reynolds numbers are 14.5, 29.0, 43.6 and 
72.6, respectively. The turbulence intensity is set 
as 10 %. Inlet concentrations of ethylene are set 
as 2.11×10-6, 4.17×10-6, 8.33×10-6, 1.23×10-6 
and 1.63 ×10-6 mol/L, respectively. At the outlet, 
pressure is specified. No-slip condition is speci-
fied at all walls.

Results and discussion
Velocity distribution
Fig. 3 shows the distribution of gas velocity for 
laminar flow. After gas enters the reactor, vorti-
ces are formed beside two side walls of reactor, 
which is typical of a sudden expansion flow. In 
the central part of the reactor, velocities depict a 
uniform feature. Near the reactor outlet, the flow 
depicts a feature of sudden contraction. With 
the increase in flow rate, the vortices increase in 
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the entire reactor cross-section for 250 mL min-1.  The velocity distributes more uniformly when 
the flow rate is low. Along the direction from inlet to outlet, the velocity is largest, meaning that 
the flow tends to be directed to the outlet. This is because the fluid is affected by the viscous 
stress at the wall while the shear stress at the center line is very small. 
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Fig. 3. Velocity distribution for laminar model at the plane of z=−0.5 mm: (a) 50 mL/min, (b) mL/min, 

(c) 150 mL/min, (d) 250 mL/min  
 
Fig. 4 shows the velocity at the center line from inlet to outlet. As shown in Fig. 4(a), When 
gas enters the reactor at a flow rate of 50 mL/min, the velocity is 0.0428 m/s with an error 0.9%.  
The maximum velocity at the center of the pipeline can reach 0.0795 m/s, which is about twice the 
averaged velocity. The distribution of velocity in the reactor is very non-uniform. Fig. 4(b) 
shows that the velocity is largest at the center of pipe, and gradually decreases toward the pipe 

Fig. 3. Velocity distribution for laminar model at the plane of z=−0.5 mm: (a) 50 mL/min, (b) mL/min, (c) 
150 mL/min, (d) 250 mL/min 

magnitude.  The vortex is restricted in a small re-
gion for 50 mL min-1 whereas distributes full of 
the entire reactor cross-section for 250 mL min-1.  
The velocity distributes more uniformly when the 
flow rate is low. Along the direction from inlet 
to outlet, the velocity is largest, meaning that the 
flow tends to be directed to the outlet. This is be-
cause the fluid is affected by the viscous stress at 
the wall while the shear stress at the center line is 
very small.
Fig. 4 shows the velocity at the center line from 
inlet to outlet. As shown in Fig. 4(a), When gas 
enters the reactor at a flow rate of 50 mL/min, the 
velocity is 0.0428 m/s with an error 0.9%.  The 
maximum velocity at the center of the pipeline can 
reach 0.0795 m/s, which is about twice the aver-
aged velocity. The distribution of velocity in the 
reactor is very non-uniform. Fig. 4(b) shows that 
the velocity is largest at the center of pipe, and 
gradually decreases toward the pipe wall, present-
ing a symmetrical distribution. The velocity under 
other flow rates are similar to each other.
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Fig. 5 shows  the distribution of gas velocity 
by using the AKN low-Re k−ε model, respec-
tively. For 50 mL/min, vortices occupy a half of 
the cross-section in the reactor, which is greater 
than that for laminar flow. Correspondingly, the 
region with uniform velocity is small. The flow 
patterns for 250 mL/min are similar for laminar 
flow and two turbulence models. The velocity 
distributions for other low-Re k − ε models are 
similar to those of the AKN models and will not 
be described in detail here.

7  

wall, presenting a symmetrical distribution. The velocity under other flow rates are similar to 
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Fig. 5. Velocity distribution for the AKN model at the plane of z = −0.5 mm:
(a) 50 mL/min, (b) 250 mL/min

Fig. 6 shows the velocity profile at the center line 
from inlet to outlet. When flow rates are small, 
the velocity obtained by six low-Re k − ε model 
are basically consistent. As the flow rate increas-
es, the fluid velocity also gradually increases and 
the velocity distributions of the six low Reynolds 
number models at the outlet pipe are different. 
When the flow rate reaches 250 mL/min, LS, YS 
and AKN models obtain nearly the same velocity 
distribution inside the reactor.

(a)  (b)
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Degradation efficiency
Degradation efficiency is an important index to 
evaluate numerical simulations, which reflects 
the integrated effects of flow and photocatalytic 
reaction in differential reactors. Table 2 and Table 
3 show the degradation efficiencies under differ-
ent inlet concentrations for inlet flow rates of 50 
mL/min and 250 mL/min, respectively. The ex-
perimental values from some researchers are also 
included in these two tables. For the inlet flow 
rates of 50 [20], all numerical simulations ob-
tained the nearly identical result [20]. The max-
imum relative error appears at a low inlet con-

8  

small, the velocity obtained by six low-Re k − ε model are basically consistent. As the flow 
rate increases, the fluid velocity also gradually increases and the velocity distributions of the 
six low Reynolds number models at the outlet pipe are different. When the flow rate reaches 
250 mL/min, LS, YS and AKN models obtain nearly the same velocity distribution inside the 
reactor. 

 
(a)                                         (b) 
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Fig.  6. Velocity profile at the position of (y = 0, z = −0.5 mm): 

(a) 50 mL/min, (b) 100 mL/min, (c) 150 mL/min, (d) 250 mL/min 
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obtained the nearly identical result [20]. The maximum relative error appears at a low inlet 
concentration of 50 ppm. With the increase in inlet concentrations, the relative error decreases. 
The same tendency is observed for the inlet flow rates of 250 mL/min. In general, degradation 
efficiencies obtained by numerical simulation are consistent with the experimental values. All 
low-Re turbulence models behave better for small inlet concentrations whereas the laminar 
model predicts the better result for big inlet concentrations. In terms of degradation efficiency, 
all these models can be used to simulate pollutant degradation in the present photocatalytic 
reactor. 
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Fig.  6. Velocity profile at the position of (y = 0, z = −0.5 mm):
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centration of 50 ppm. With the increase in inlet 
concentrations, the relative error decreases. The 
same tendency is observed for the inlet flow rates 
of 250 mL/min. In general, degradation efficien-
cies obtained by numerical simulation are con-
sistent with the experimental values. All low-Re 
turbulence models behave better for small inlet 
concentrations whereas the laminar model pre-
dicts the better result for big inlet concentrations. 
In terms of degradation efficiency, all these mod-
els can be used to simulate pollutant degradation 
in the present photocatalytic reactor.
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The rate constants of ethylene are fitted directly 
by using Eq. 9 [20]. The estimated values are k 

= 1.3 × 10-2 mol/ ms2 and K=480 m3/ mol. Fig. 
7 shows the degradation efficiency for laminar 
flow using these rate constants. In general, the 
computed degradation efficiency accords well 
with the experimental values. However, there ex-
ists some discrepancy for small inlet flow rates. 
This error can be reduced by optimizing the reac-
tion rate constant. The optimized values of k and 
k are 1.52×10-2 mol/ms2, and 630.0 m3/mol.  As 
shown in Fig. 8, the laminar model reproduces 
the experiment for both 50 mL/min and 250 mL/
min using the optimized parameters.

9  

Table 2. Degradation efficiency under different models at 50 mL/min (%) 
 

ethylene concentration (ppm) 50 100 200 300 400  
experimental value 30.40 21.92 12.07 9.85 8.03  

Laminar 23.22 17.51 11.28 8.37 6.75  

ABID 23.69 17.63 11.32 8.37 6.61  

LB 23.70 17.63 11.32 8.37 6.61  

LS 23.70 17.63 11.32 8.37 6.61  

YS 23.70 17.63 11.32 8.37 6.61  

AKN 23.71 17.63 11.32 8.37 6.61  

CHC 23.70 17.63 11.32 8.37 6.61  

 
 

Table 3. Degradation efficiency under different models at 250 mL min-1(%) 
ethylene concentration (ppm) 50 100 200 300 400  
experimental value 7.10 4.68 2.44 1.85 1.50  

Laminar 5.02 3.62 2.29 1.71 1.35  

ABID 5.19 3.69 2.30 1.69 1.33  

LB 5.19 3.69 2.30 1.69 1.33  

LS 5.19 3.69 2.30 1.69 1.33  

YS 5.19 3.69 2.30 1.69 1.33  

AKN 5.19 3.69 2.30 1.69 1.33  

CHC 5.21 3.70 2.30 1.69 1.33  
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Conclusion
Numerical simulations of flow and reaction in 
differential reactors are conducted based on lami-
nar flow and six low Re turbulence models. All 
simulations obtain similar flow fields. The flow 
in reactors is governed by vortex near the inlet. 
The vortex regions differ much for low inlet flow 
rate whereas are similar for high inlet flow rates.
The degradation of ethylene is considered. The deg-
radation efficiencies predicted by all simulations 
are in accordance with the experimental values. 
The optimization of rate constants may improve the 
simulation. Considering the computation complex-
ity, laminar flow can be recommended to simulate 
the photocatalytic reaction in differential reactors.
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