CRITICAL REVIEW OF AIR POLLUTION HEALTH EFFECTS WITH SPECIAL CONCERN ON RESPIRATORY HEALTH

Morteza Abdullatif Khafaie1*, Chittaranjan S. Yajnik2, Sundeep S. Salvi3, Ajay Ojha4
1Environmental Technologies Research Center & Department of Public Health, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2King Edward Memorial Hospital Research Center, Pune, Maharashtra, India
3Chest Research Foundation (CRF), Pune, Maharashtra, India
4Technogreen Environmental Solutions, Pune, Maharashtra, India

SEARCHING, PubMed (accessed Nov. 10, 2015) for “Air pollution” and “Health” resulted in 26,156 citations. Since the 1930 Meuse Valley episode in Belgium, Donora 1948 and the London fog of December 1952, the number of studies showing adverse health effects of short and long term exposure to outdoor air pollution has grown. This review looks at historical air pollution studies to get a general overview of the overall health effects that can be attributed to bad air quality. Then we specifically reviewed the important respiratory effects, the plausible mechanism and population at greater risk. Further research is central concern of researcher and policy maker to assess the plausible biological mechanisms of air pollution effects and identifying specific air pollutant that would be more dangerous.

ARTICLE INFORMATION
Article Chronology:
Received 11 November 2015
Revised 14 February 2016
Accepted 12 March 2016
Published 31 May 2016

Keywords:
air pollution; health effect; mechanism; respiratory system

CORRESPONDING AUTHOR:
m.khafaie@live.com
Tel: (+98 61) 33362536
Fax: (+98 61) 33361544

REVIEW
Historical perspective
1930 Meuse valley episode of Belgium
On December 4 and 5, a high atmospheric pressure and mild winds created an immobile fog in a narrow valley in Belgium, which entrapped pollutants and caused 60 deaths. Most of the deaths were in the small town of Engis [1].

Donora 1948
On October 26, accumulation of industrial pollutants from a local smelting plant over Donora, Pennsylvania, leads to an environmental disaster. The incident caused 20 sudden deaths, 400 hospitalizations and affected half the residents [2].

London smog of December 1952
Demonstrated a turning point in the history of air pollution. From December 5 to 9, a dense fog loaded with pollutants from local stoves and industrial plants more or less paralyzed the entire city where black smoke and SO2 concentration...
exceed 3000 µg/m³. There was a 48% increase in all hospital admissions and a 163% increase in respiratory disease related admissions. During and shortly after the incident, the numbers of deaths were significantly elevated. A retrospective analysis indicated that there were approximately 12000 more deaths from December 1952 through February 1953 [3].

Bhopal episode of Madhya Pradesh

At midnight on Dec. 2nd and 3rd, India witnessed the worst industrial disaster in the world. The accidental released 40 tons of Methyl Isocyanate (MIC) spilled over from the Union Carbide factory in Bhopal, killing 2,500 to 6,000 people and making more than 20,000 people ill [4]. These events motivated nations around the world to put in place laws to limit the effects of air pollutants. The Clean Air Act and Air Quality Act in the United States, established in 1963 and 1967 are especially notable.

General review of air pollution health effect

The associations between air pollution and health issues are derived from epidemiological studies (episode, time series, crossover, and cohort), toxicological studies and controlled human studies. A variety of acute physiological effects, including, induction of pulmonary and systemic inflammation [5], endothelial dysfunction[6], thrombosis [7, 8], arrhythmia[9], and blood pressure [10] reported which may contribute to long-term consequences of cumulated exposure [11] such subclinical indicators of, insulin resistance [12], metabolism disorder (i.e. diabetes [13-15]), respiratory [16, 17] and cardiovascular disease [18]. These morbidities ultimately lead to shorter life expectancies (see Table 1) [19].

In broad view, epidemiological air pollution studies looking at the temporal as well as spatial variations in concentrations of air pollution. We discussed the evidence that air pollution is associated with acute (i.e. outcome from episode and time series) and chronic health related event (i.e. cross-sectional and cohort) in human populations.

Short term health effect

Broadly two research approaches have been used to evaluate short term health effects of air pollution. One approach investigates whether the incidence of health related events (e.g. incidence of

<table>
<thead>
<tr>
<th>Acute</th>
<th>Heart/vasculature</th>
<th>Chronic</th>
<th>Heart/vasculature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Forced expiratory</td>
<td>- Heart rate, blood pressure</td>
<td>- Reduced lung growth</td>
<td>- Reduced life expectancy (premature</td>
</tr>
<tr>
<td>- Volume and flows</td>
<td></td>
<td>- Reduced small airway function,</td>
<td>cardiovascular death)</td>
</tr>
<tr>
<td>- Inflammatory</td>
<td>- Blood coagulation factor, vascular</td>
<td>- Chronic bronchitis</td>
<td>- Atherosclerosis</td>
</tr>
<tr>
<td>- mediators</td>
<td>reactivity, inflammation</td>
<td>- Asthma</td>
<td></td>
</tr>
<tr>
<td>- Air way remodeling</td>
<td>- Vessel structure</td>
<td>- Lung cancer</td>
<td></td>
</tr>
<tr>
<td>- Upper/lower</td>
<td>- Thrombosis, myocardial infarction, stroke,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- respiratory symptoms,</td>
<td></td>
<td>- Hospitalization</td>
<td></td>
</tr>
<tr>
<td>- Exacerbations,</td>
<td></td>
<td>- Death</td>
<td></td>
</tr>
<tr>
<td>- hospitalization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Respiratory and cardiovascular health effect of air pollution

http://japh.tums.ac.ir
deaths, hospitalization, subclinical Pathophysiological responses) can be correlated to episodes or daily fluctuations of air pollution in a population. This method generally uses available data on daily counts of health related events and relates these to ambient concentrations of air pollution on the same or previous days measured by central monitors situated in the study area. Alternative perspectives are individual-level studies, such as panel (group of individual followed over time) and case-crossover (comparing pollution at an index time close to the event with concentration at other referents times), which are of more complex design.

Mortality

Studies reporting daily changes in death counts attributable to short-term changes in air pollution are increasing. Evidence from a large number of time-series studies shows very clearly that air pollution is positively associated with increased mortality. For instance, a meta-analysis of time-series studies estimates that a 10µg/m³ increase in daily PM₂.₅ levels increases the daily cardiovascular mortality (RR= 0.4%-1.0%) [20]. The most important studies of this kind are National Morbidity, Mortality, and Air Pollution Study (NMMAPS), which looked at a few cities in the U.S. [21-23] and a number of countries [24]; Air Pollution and Health: A European Approach (APHEA and APHEA-2) projects [25, 26]; a few time-series studies have also confirmed similar finding from Asia [27, 28]. The overall evidence from time-series analyses conducted worldwide confirms the existence of a small and consistent association between increased mortality and short-term elevations in number of air pollutants. Risks attributed to air pollution are not equally distributed within a population, with some, such as the elderly and those with “existing coronary artery or structural heart disease”, more likely to be susceptible [29]. Also it has been noted that short term elevations in daily PM levels lead to a greater absolute risk for CVD-related mortality (69%) than for all other causes such pulmonary (28%) diseases [30]. Copper, et al. [31] conducted a time series study to find out impact of particulate air pollution on daily mortality in Delhi. They analyzed mortality data, 25% of total death in Delhi. They observed about 2.3% increase in daily non-accidental deaths per 10 µg/m³ increase in total particulates, and also significant increase in deaths from respiratory and cardiovascular causes for selected age groups. Since studies from other countries showed an increase in death (6%) simultaneously, they attributed this difference to the fact that a larger proportion of deaths occur at younger age.

Hospitalization rate (clinical symptom)

Associations between daily measurements of the pollutants and daily admissions to the hospital for a variety of health related problem are also generally positive and significant. For instance, Dominici et.al. [32], investigated data from large number of U.S. cities (n=204), counties with 11.5 million individuals older than 65 years. Daily changes in PM₂.₅ levels were associated with a range of cardiovascular and respiratory hospital admission. Different levels of association reported from different region (stronger in the Northeast than in other regions). It was suggested that these differences reflected variations in particle composition and pollution sources, but still more investigation is needed to explain this heterogeneity.

Subclinical pathophysiological response

Subclinical physiological changes occur in individuals in response to the inhalation of air pollution that do not become clearly noticeable. There are evidences that even short-term exposure to air pollution can result in changes to biomarkers of inflammation (local and systemic), oxidative stress, endothelial cell activity, vascular dysfunction, blood pressure, heart rate variability, etc. [33]. Reported associations usually vary from place to place. This disparity in finding could be explained by variations in the characteristics of
air pollution, exposure assessment methods, environments of exposure coupled with diversity in time frames, and host factors. However, this finding supports previous observable outcome (e.g. death, MI) and provides insight into the plausible mechanism whereby air pollution affects health.

Long term health effect

Some studies reporting long-term exposure to air pollution have inverse and statistically significant associations with life expectancy. Early population-based cross-sectional studies from as early as 1970 in U.S. metropolitan areas reported that mortality rates are associated with annual concentrations of PM$_{2.5}$ or SO$_2$ [34-36]. However, the studies were limited in controlling for individual factors, which could have potentially confounded the air pollution effects. The other main research approach is prospective studies which usually follow a group of subjects (cohort) for a number of years and provide important information about the amount of life lost or chronic health events due to air pollution. The evidence from two American studies from 1993 suggests that cardiovascular deaths increase when people live in areas with higher levels of air pollution. However, because prospective studies require collecting information on a large number of people and following them prospectively for long periods of time, they are costly, time consuming, and, therefore, much less common.

Although air pollution studies of short-term health effect (i.e. time series, panel, and crossover) provide a vast amount of information about the role of pollution in inducing or accelerating the progress of chronic disease [36], they are significantly less useful for estimating the health impact in terms of amount of life lost or additional admission to the hospital. Studies of long-term air pollution and health effect can be classified into three main types:

1) Studies of different occupational groups with different occupational exposure to pollutions; the unit of investigation is the occupational group (such as traffic police officers) and health issue (disease such as lung cancer). These types of studies do not deal with a mixture of pollutants. For instance, Wiwanitkit estimated the risk of cancer for traffic police officers is about 1.8 per 100000 per year [37].

2) Trend studies or studies of fixed populations with long-term changes in exposure to air pollution; before and after differences in pollution are related to before and after differences in health-related issues. Studies of this kind are follow-ups of the Harvard Six Cities study, which clearly showed a reduction in fine particulate air pollution was associated with improved overall mortality [38].

3) Studies of different population with different levels of long-term exposure to air pollutants; such studies provide information on each population’s exposure (i.e. long-term exposure to traffic-related air pollution) and health related events (development of diabetes) [39].

All types of studies of long-term health effect of air pollution (named above) have some limitations such; a) Measurements of exposure to pollutants are extrapolated to a whole population, b) Air pollution involves a mixture of possible harmful components that shows a degree of association with each other and with other factors (such as temperature, barometric pressure and rainfall), and c) Observation of health related events between people exposed to different levels of air pollution are likely to be confounded by all the other socio-economic and cultural difference that might also explain different levels of disease.

Respiratory health effect

The respiratory system is the main portal of air pollution entry and as a biochemically active tissue involving mediators that induce both local and systemic effects after exposure [40]. Therefore the lung is the first organ affected within hours or after years of exposure. Growing evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly

http://japh.tums.ac.ir
This section will discuss the effects exposure to outdoor air pollution on the respiratory tract including lung function, pulmonary exacerbation, and disease rate (i.e. Asthma and COPD).

Lung function

Lung function is an important measure of chronic respiratory and systemic inflammation, as well as premature cardio-respiratory morbidity and mortality [42]. These same outcomes have been associated with ambient air pollution [43]. Therefore lung function is an important link in the investigation of effects of ambient air pollution. Over the past 20 years, many publications have investigated long-term effects of ambient air pollution on lung function with most finding adverse effects. There is strong evidence for an adverse effect of air pollution on lung function growth from cross-sectional studies [44-47] supported by longitudinal studies conducted in Europe [48-50] and the United States [51-53] but the size of the effect and which pollutants are responsible remains unclear (i.e. the extent to which long-term exposure to outdoor air pollution accelerates adult decline in lung function, increasing the risk of chronic respiratory disease and cause death by cardiovascular disease, is unclear).

In adults, the evidence for long-term air pollution effects is mostly based on cross-sectional comparisons [54, 55]. The Swiss SAPALDIA study is currently the only notable longitudinal study reporting significant associations between long-term exposure to air pollution and decline in lung function [56], whereas the earlier longitudinal studies had substantial limitations [57-60]. There is great diversity in study designs, types of air pollutants, exposure assessment, and measures of lung function. These limit the comparability of studies and hamper quantitative summaries. Results from longitudinal studies are conflicting.

Nine years follow up of 5610 European multi-national adult, in European Community Respiratory Health Survey (ECRHS) by aim of testing the effect of long-term air pollution and its association with both lung function level and change in lung function, results in null association neither for average lung function levels nor change on lung function with city- specific annual mean PM$_{2.5}$ [61]. Where Swiss study on Air Pollution and Lung Disease in adults (SAPALDIA) exposure to air pollution not only associated with adverse effect on lung function [62] but it have beneficial impact when there is improvement in air quality [63] and respiratory symptoms.

New studies should use individual-level exposure assessment to clarify the role of traffic and to exclude potential community-level confounding. Further research is also needed to identify specific pollution sources which are more hazardous, and groups which are more susceptible. Table 2 summarizes the results of studies dealing with long-term exposure to air pollution and measures of lung function.

<table>
<thead>
<tr>
<th>Population</th>
<th>Design</th>
<th>Place/Year</th>
<th>Pollutant</th>
<th>Level/Resolution</th>
<th>Key finding</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 2841 ~ 48 years</td>
<td>Cross-sectional</td>
<td>central Italy/1991-93</td>
<td>Traffic-related</td>
<td>Group/distance from main road</td>
<td>Alteration in lung function</td>
<td>[64]</td>
</tr>
<tr>
<td>N= 1983 children</td>
<td>Prospective</td>
<td>China/?</td>
<td>PM$_{10}$, NO$_2$, SO$_2$, O$_3$</td>
<td>Individual/postcodes</td>
<td>Decrease FEV$_1$</td>
<td>[65]</td>
</tr>
<tr>
<td>N=5610 European</td>
<td>Prospective</td>
<td>Europe/1991–93 and 2000–2002</td>
<td>PM$_{2.5}$</td>
<td>Group/central monitor</td>
<td>- null</td>
<td>[61]</td>
</tr>
</tbody>
</table>
Table 2. Summary of long-term exposure to air pollution and lung function

<table>
<thead>
<tr>
<th>Population</th>
<th>Design</th>
<th>Place/Year</th>
<th>Pollutant</th>
<th>Level/Resolution</th>
<th>Key finding</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=5682 female</td>
<td>prospective</td>
<td>Tokyo / 1987 to 1994</td>
<td>NO₂, SPM</td>
<td>Group/residential area</td>
<td>Decrease in FEV₁</td>
<td>[59]</td>
</tr>
<tr>
<td>N=1670 25-59 years</td>
<td>prospective</td>
<td>Southern California</td>
<td>SO₂, PM, NOₓ</td>
<td>Group/geographic area</td>
<td>FEV₁ decline</td>
<td>[58]</td>
</tr>
<tr>
<td>N=1414 Adult</td>
<td>prospective</td>
<td>Cracow (1968-1981)</td>
<td>sulfur</td>
<td>Group/residential area</td>
<td>Low FEV₁, FEV₁ decline rate</td>
<td>[60]</td>
</tr>
<tr>
<td>N=1001 preadolesc</td>
<td>prospective</td>
<td>Poland/?</td>
<td>SPM, SO₂</td>
<td>Group/geographic area</td>
<td>Lower lung function, Slower growth</td>
<td>[49]</td>
</tr>
<tr>
<td>N= ? ages 6–24</td>
<td>cross-sectional</td>
<td>United States/?</td>
<td>TSP, NO₂, SO₂</td>
<td>Group/geographic area</td>
<td>FVC - FEV₁, Peak expiratory flow</td>
<td>[45]</td>
</tr>
</tbody>
</table>

Asthma and chronic obstructive pulmonary disease (COPD)

Even though, the number of reports showing association between short-term exposure to air pollution and exacerbation of chronic obstructive pulmonary disease (COPD) and Asthma increasing but limited number of prospective cohort indicating long-term impact of air pollution on the development of these diseases and related symptoms. Cross-sectional studies based on large number of population from the USA (n=13369) [67], Switzerland (n=4470) [68], and Austria (n=843) [69] reporting increased risk of respiratory outcomes (disease and symptoms) and air pollution, where other study from Canada (n>1600) only showed lower levels of lung function among children living in more polluted area (SO₂, O₃) [70]. We have summarized result from studies dealing with long-term exposure to air pollution and respiratory outcomes (see Table 3).

Table 3. Long-term exposure to air pollution and respiratory disease and symptoms

<table>
<thead>
<tr>
<th>Population</th>
<th>Design</th>
<th>Place/Year</th>
<th>Pollutants</th>
<th>Level/Resolution</th>
<th>Key finding</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N~4000 1-2 years</td>
<td>Prospective</td>
<td>Netherlands 1996-7 1998-9</td>
<td>NO₂, PM₂.₅ soot</td>
<td>Individual/home address</td>
<td>Traffic-related air pollution was associated with self-reported prevalence of respiratory illness,</td>
<td>[71]</td>
</tr>
<tr>
<td>N=3535 children</td>
<td>Prospective</td>
<td>Southern California/?</td>
<td>Ozone NO₂ PM</td>
<td>Group/geographic area</td>
<td>Incidence of new diagnoses of asthma is associated with heavy exercise in communities with high concentrations of ozone</td>
<td>[72]</td>
</tr>
<tr>
<td>N=4757 55 years women</td>
<td>Cross sectional</td>
<td>Germany/1985–1994</td>
<td>NO₂ PM₁₀</td>
<td>group/8 km grid & distance from nearest major road</td>
<td>long-term exposure with air pollution from industrial sources and traffic had an adverse effect on pulmonary function, COPD</td>
<td>[73]</td>
</tr>
<tr>
<td>N~4000 First 4 years</td>
<td>Prospective birth cohort</td>
<td>Netherlands/1996-1997 1999-2000</td>
<td>NO₂, PM₂.₅ soot</td>
<td>Individual/home address (land-use regression model)</td>
<td>Traffic-related air pollutants were positively associated with wheeze, asthma diagnosis, respiratory infections and sensitisation to food allergens</td>
<td>[74]</td>
</tr>
</tbody>
</table>

http://japh.tums.ac.ir
Mechanism of air pollution health effect

Ambient air contains various pollutants such as diesel exhausts which contain free radicals or highly oxidative gases (e.g. O₃ or NOₓ). The release of reactive oxygen species from lung cells upon contact with inhaled particles, where toxic substances such as metals are adsorbed, attack and oxidize other cell component in the lungs [81]. This leads to tissue injury and the influx of inflammatory cells to the sites of injury [82]. Activated inflammatory cells also generate and release large quantity of free radical [83]. In the absence of anti-oxidants, these free radicals attack local tissue and component and cause cell injury in the lung with the development of histological pulmonary inflammatory foci [11]. Extensive numbers of experimental studies have shown that lung epithelial cells and alveolar macrophages generate a rich milieu of inflammatory mediators when exposed to atmospheric particles. Furthermore increased oxidative stress production and development of inflammation in the lungs may transduce to the systemic tissues. Systemic inflammatory reactions, mediated through cytokines and chemokines, have been described in vitro [84], in vivo [85, 86], and in chamber studies with human subjects [87] (see Table 4).

Table 3. Long-term exposure to air pollution and respiratory disease and symptoms

<table>
<thead>
<tr>
<th>Population</th>
<th>Design</th>
<th>Place/Year</th>
<th>Pollutants</th>
<th>Level/Resolution</th>
<th>Key finding</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=2,860 4 years N=3,061 6 years</td>
<td>Prospective birth cohort</td>
<td>Munich metropolitan area/Dec 2005</td>
<td>NOₓ, PM₂.₅</td>
<td>Individual/home address & distance from the nearest main road</td>
<td>Strong positive associations were found between the distance to the nearest main road and atopic diseases (asthmatic bronchitis, hay fever, eczema), and sensitization</td>
<td>[75]</td>
</tr>
<tr>
<td>n = 4089 Children</td>
<td>Prospective birth cohort</td>
<td>Sweden/?</td>
<td>NOₓ, PM₁₀</td>
<td>Individual/home addresses (dispersion modeling)</td>
<td>Early life Exposure to traffic related air pollution influence the development of airway disease and sensitization</td>
<td>[76]</td>
</tr>
<tr>
<td>N=57,053</td>
<td>Prospective</td>
<td>Denmark /1993- 2006</td>
<td>NO₂ NOₓ</td>
<td>Individual/indicators of traffic near the residential address at recruitment</td>
<td>Positive association between first-ever hospital admission for COPD and 35-year accumulated exposure to traffic-related air pollution at home address and modifying effects of asthma and diabetes.</td>
<td>[77]</td>
</tr>
<tr>
<td>N=3863 8 years.</td>
<td>Prospective</td>
<td>Netherlands /1996-1997</td>
<td>NO₂ PM₂.₅ Soot</td>
<td>Individual/land-use regression models</td>
<td>Levels of traffic-related air pollution was positively associated with incidence and prevalence of asthma, and the prevalence of asthma-related symptoms in children</td>
<td>[78]</td>
</tr>
<tr>
<td>10106 white preadolescent</td>
<td>Cross-sectional</td>
<td>United States /1974 and 1977</td>
<td>TSP TSO₄ SO₂</td>
<td>Group/geographic area</td>
<td>Frequency of cough, rates of bronchitis and a composite measure of lower respiratory illness were associated with air pollutants during the year preceding the health examination and lifetime mean TSP concentration</td>
<td>[79]</td>
</tr>
<tr>
<td>N=10,251 age 8-12</td>
<td>Cross-sectional</td>
<td>United States and Canada</td>
<td>PM₁₀</td>
<td>Group/geographic area</td>
<td>Living in area with High levels of pollution were significantly associated with prevalence of bronchitis</td>
<td>[80]</td>
</tr>
</tbody>
</table>
Table 4. Result from studies investigating association between air pollution and inflammatory components responses

<table>
<thead>
<tr>
<th>Population</th>
<th>Exposure type</th>
<th>Outcomes</th>
<th>Result</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy young subjects</td>
<td>Air pollutants during the 1997 Southeast Asian forest fires</td>
<td>Cytokines</td>
<td>Elevate levels of IL-1, IL-6, GM-CSF</td>
<td>[88]</td>
</tr>
<tr>
<td>N=38 healthy subject</td>
<td>Particles concentrated air</td>
<td>Cells and fluid obtained by bronchoalveolar lavage</td>
<td>Increased fibrinogen</td>
<td>[87]</td>
</tr>
<tr>
<td>N= 79 Honduran women cooking with traditional or improved cook stoves</td>
<td>Indoor and personal monitoring of CO and PM10</td>
<td>Pulmonary function and respiratory symptoms C-reactive protein</td>
<td>Null</td>
<td>[91]</td>
</tr>
<tr>
<td>Normal hamster</td>
<td>Concentrated ambient particulates, residual oil fly ash, and their water-soluble and particulate fractions</td>
<td>Intracellular oxidant production in alveolar macrophages</td>
<td>Increased in TNF-alpha AMs macrophage</td>
<td>[86]</td>
</tr>
<tr>
<td></td>
<td>Ambient coarse & fine PM</td>
<td>Inflammation & oxidant stress</td>
<td>Inhibited mRNA & protein Decreased TLR4 in the macrophages</td>
<td>[84]</td>
</tr>
<tr>
<td>45 schoolchildren with persistent asthma</td>
<td>Personal active sampler exposures</td>
<td>Exhaled nitric oxide</td>
<td>Increase FENO</td>
<td>[92]</td>
</tr>
</tbody>
</table>

These findings, also, have been supported by population base studies [88] (see Table 5). Systemic effect of air pollution may either be result from indirect release of inflammatory mediators into the blood or they could be the result of translocation of particles or their chemical constituents into the systemic circulation with direct action at the target sites [33, 89]. Additional experiments show that air pollution exposure could induce autonomic nervous system imbalance [90]. However, inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system.

Table 5. Studies investigated short-term air pollution effect on C-reactive protein

<table>
<thead>
<tr>
<th>Population</th>
<th>Place/Years</th>
<th>Pollutant(s)</th>
<th>Outcomes</th>
<th>Key finding</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=112 60+ years</td>
<td>UK/1996-1998</td>
<td>Personal exposure and city center measurements of PM2.5</td>
<td>Repeated Measurement: Hemoglobin, Peaked Cell Volume, Red Cell Count, platelets, white cell count, IL-6, CRP, Fibrinogen, Factor VII</td>
<td>Decrease in Hb, PCV, RCC, Platelets, Factor VII, Increase in CRP</td>
<td>[93]</td>
</tr>
<tr>
<td>N=631 male MONICA Augsburg Cohort</td>
<td>Southern Germany/ 1984-85 & 1987-88</td>
<td>SO2, TSP, and CO</td>
<td>Repeated measurement CRP</td>
<td>CRP concentration increased during 1985 episode. Also elevated CRP, were associated with SO2, and TSP</td>
<td>[94]</td>
</tr>
</tbody>
</table>

http://japh.tums.ac.ir
Table 5. Studies investigated short-term air pollution effect on C-reactive protein

<table>
<thead>
<tr>
<th>Population</th>
<th>Place/Year</th>
<th>Pollutant(s)</th>
<th>Outcomes</th>
<th>Key finding</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 9 male Healthy</td>
<td>North Carolina/2001</td>
<td>In-vehicle PM2.5, Central PM2.5, Road side PM2.5</td>
<td>Repeated measurement: CRP</td>
<td>HRV, ectopic beats, blood inflammatory and coagulation markers, and MCV showed increase associated with in-vehicle exposure to PM2.5</td>
<td>[95]</td>
</tr>
<tr>
<td>N=88 elderly</td>
<td>Utah (U.S)/ 1999-2000</td>
<td>Central PM2.5</td>
<td>Repeated measurement: Heart Rate, (SDNN, SDANN, r-MSSD), CRP, Monocytes</td>
<td>PM2.5 were negatively associated with HRV and CRP but not with changes in WBC, RBC, platelets, or whole-blood viscosity.</td>
<td>[96]</td>
</tr>
<tr>
<td>N=57 male with CHD</td>
<td>Erfurt (Germany)/2000-2001</td>
<td>Central UFP 0.01-0.1</td>
<td>Repeated measurement: CRP, SAA, Factor VII, vWF, Fibrinogen, ICAM-1, E-selectin</td>
<td>ICAM-1 and CRP were associated with all of pollutants ambient except EC and OC, with a higher association on lags 1 and 2 respectively.</td>
<td>[97]</td>
</tr>
<tr>
<td>N=6814 45-84 years</td>
<td>U.S/ 2000-2002</td>
<td>Central PM2.5</td>
<td>CRP</td>
<td>Only average 30 and 60 days exposure to PM2.5 were weakly associated with CRP and no other lags days.</td>
<td>[98]</td>
</tr>
<tr>
<td>N=710 male Normative</td>
<td>Boston ,U.S/ 2000-2004</td>
<td>Central site near the examination site: PN, BC, PM2.5, SO2</td>
<td>WBC, CRP, SR, and Fibrinogen</td>
<td>PN and BC had greater association with inflammatory markers, than PM2.5 and SO2. Elder (>78 years) and obese were the more vulnerable subject to this effect. Also a suggestion for a protective effect of Statin use on effect of particles on inflammatory markers observed.</td>
<td>[99]</td>
</tr>
<tr>
<td>N=1003 35-80 post-MI</td>
<td>Greece, Germany, Spain, Finland, Italy, and Sweden/2003-2004</td>
<td>Central, PM2.5, gaseous (SO2, NO2, NO, CO, O3), PNC, BS, BC</td>
<td>Repeated measurement: IL-6, CRP, Fibrinogen</td>
<td>Elevated PNC 12-17 hrs before the clinical visit increased IL-6. Cumulative exposure, to PM10 & PM2.5 were associated with an increase in fibrinogen and not CRP.</td>
<td>[100]</td>
</tr>
<tr>
<td>N=76 young, healthy students</td>
<td>Taipei/ 2004-2005</td>
<td>Air monitoring station PM2.5, PM1.0, SO2, NO2, CO, and O3</td>
<td>Repeated measurement of CRP, 8-OHdG, PAI-1, Plasma tPA, and HRV</td>
<td>Ambient air pollution were associated with increases in hs-CRP, 8-OHdG, fibrinogen, and PAI-1, and decreases in HRV indices.</td>
<td>[101]</td>
</tr>
<tr>
<td>N=3659 Tel Aviv /2003 & 2006</td>
<td>City central monitored PM10, SO2, NO2, CO, and O3</td>
<td>Fibrinogen, CRP, and WBC</td>
<td>In the male, negative correlation between NO2, SO2, and CO, and fibrinogen in several lag days, and PM10 at day 7</td>
<td>[102]</td>
<td></td>
</tr>
<tr>
<td>N=1696 pregnant women</td>
<td>U.S/ 1997-2001</td>
<td>Nearest monitoring station, PM2.5, & PM1.0, CO2, SO2, NO2, and ozone</td>
<td>CRP</td>
<td>Increase PM10 and PM2.5 prior to the blood sample was associated with high CRP.</td>
<td>[103]</td>
</tr>
<tr>
<td>N= 1700 Diabetes patients</td>
<td>Pune India 2007</td>
<td>City central monitoring station; PM10, SO2, NO2</td>
<td>CRP</td>
<td>SO2 and oxides of nitrogen (NOx) in ambient air, were associated with increased in CRP.</td>
<td>[104]</td>
</tr>
</tbody>
</table>

Who is at greater risk

Vulnerability and susceptibility to the adverse health effects of air pollution could be related either to variation in exposure between individual and groups or to the degree to which individuals or groups may respond to a given exposure. For instance, people living or working (e.g. bus drivers, traffic police officers) along highly trafficked roads are a vulnerable group. Susceptible group includes children (because they breathe a greater volume of air relative to their body weigh), elderly subjects (especially subjects with pre-existing heart or lung disease) and poorly educated populations.
- Oxidant-antioxidant activity is a key characteristics of susceptibility: it appears likely that an individual’s sensitivity to pollution is related, in part, to their pulmonary antioxidant defenses. This could involve modification effect of variation in genes or condition (such obesity, elderly, pre-existing disease) which involved is in inflammatory processes, defense against reactive oxygen species formed by particulate matters, or enzymes involved in the detoxification toxic compounds present in ambient air.

- Obesity is a metabolic condition that influences immune function [105]. It plays significant role in pro-inflammatory mediators’ production in adipose tissue that contributes to a low-grade state of systemic inflammation [106]. Consequently, oxidant-antioxidant imbalances and alterations in physiological systems can largely influence the response of the lungs to inflammatory stimuli such air pollution [107].

- Aging: it is also accompanied by changes in the functions of leukocytes and antioxidant defenses. Lowering of the antioxidant defenses in the elderly could predispose them to amount inappropriate and harmful inflammatory responses.

CONCLUSIONS
The National Research Council (NRC) declared that there needs to be more research on the long-term health effects of air pollution exposure in two areas: first the effects of PM in combination with gaseous pollutants (such as nitrogen dioxide), and the effects on potentially susceptible groups. Also SAPALDIA and Health Effects Institute (HEI) also recommend further studies to address unresolved issues, such as why some persons suffer more from the exposure to air pollution than others.

However, Asian studies on adverse health effects of air pollution are limited to a few cross sectional studies. That is because monitoring of air quality in most cities is irregular, incomplete and inaccessible, and hospital based health records and incomplete death records available with municipal authorities. No Asian prospective study has been published on the impacts of air pollution on respiratory health especially on susceptible group such diabetic’s patient since this would require an assessment of individual exposures.

FINANCIAL SUPPORTS
The study was supported by the Welcome Trust (London, U.K.).

COMPETING INTERESTS
No potential conflicts of interest relevant to this article were reported

ACKNOWLEDGEMENTS
This review is part of PhD thesis report from Interdisciplinary School of Health Sciences, University of Pune. M.A.K. discussed, and edited the manuscript. C.S.Y., S.S.S. and A.O. edited the manuscript. The authors acknowledge the contributions of K. Kumaran (King Edward Memorial Hospital) and Gayathri Vaidyanathan (Environment and Energy Publishing’s Energywire-Washington DC) in improving the language.

ETHICAL CONSIDERATIONS
“Ethical issues (Including plagiarism, Informed Consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc) have been completely observed by the authors.”

REFERENCES

http://japh.tums.ac.ir

http://japh.tums.ac.ir

http://japh.tums.ac.ir