Original Article

Evaluation of particulate matter PM$_{2.5}$ and PM$_{10}$ (Case study: Khash cement company, Sistan and Baluchestan)

Elham Shahri1, Mohammad Velayatzadeh2,*, Mohammad Hossein Sayadi1

1 Department of Environmental Science, University of Birjand, Birjand, Iran
2 Department of Industrial Safety, Caspian Institute of Higher Education, Qazvin, Iran

ABSTRACT:

Introduction: One of the most important contaminants in the cement industry are environmental suspended particles (PM$_{2.5}$ and PM$_{10}$), which cause respiratory and pulmonary diseases in humans.

Materials and methods: This descriptive - analytical study was carried out in 2016-2017 on the peripheral particulate matter of Khash cement plant. Sampling was performed at 8 environmental stations of Khash Cement Company in spring, summer, fall and winter. A total of 576 samples were sampled of peripheral particulate matter.

Results: The amount of particulate matter was PM$_{2.5}$ 2.82 to 24.63 µg/m3, respectively. The highest PM$_{2.5}$ content was obtained in spring (24.32±2.51 µg/m3). The lowest amount of particulate matter PM$_{2.5}$ in different seasons were measured in substation (P<0.05). The amount of particulate matter was PM$_{10}$ 19.98 to 68.22 µg/m3, respectively. The highest PM$_{10}$ content was obtained in autumn (64.92±3.76 µg/m3). The lowest amount of particulate matter PM$_{10}$ in spring and summer were measured in substation (P<0.05), but the lowest amounts in the autumn at the entrance door and in winter was observed in wastewater treatment.

Conclusion: In this study, the amount of PM$_{2.5}$ and PM$_{10}$ peripheral particulate matter in Cement Company was lower than WHO and USEPA standard. According to the results it can be stated that the suspended particles Khash Cement Company environment for human respiration were within acceptable limits.

ARTICLE INFORMATION

Article Chronology:
Received 02 October 2019
Revised 02 November 2019
Accepted 01 December 2019
Published 30 December 2019

Keywords:
Air pollution; Particulate matter; PM$_{2.5}$; PM$_{10}$; Cement industry

CORRESPONDING AUTHOR:
mv.5908@gmail.com
Tel: (+98 61)34609241
Fax: (+98 61)32218340

Introduction

Nowadays, air pollution is one of the major problems of urbanization and industrial life and the lives of all people in society have been affected by this problem. The cement industry is one of the key industries in developing countries which are widely used in various projects. However, this industry is considered one of the most polluting industries [1, 2]. The cement structure is composed of materials such as silicon dioxide, iron oxide, aluminum oxide and calcium oxide [3]. The cement and its related industries have long been regarded as one of the most important environmental pollutants. For this reason, monitoring and control of environmental pollutants is of particular importance in this industry [4]. Solid particles emitted from the cement industry without any precise control over them almost in-
variably invade our living space and over time and accumulate the environment of these gases and particles, humans, plants and animals have been seriously threatened [5, 6]. Air pollutants due to the cement production process and its diffusion to the environment, depending on the nature of the contaminant and the exposure time, because various complications and diseases in humans, animals and plants and the synergistic effect on it, will have other air pollutants [7].

Environmental pollutants are one of the main pollutants from the cement production process. According to the World Health Organization (WHO) estimates in the early years of the 21st century, air pollution caused by particulate matter alone has killed about 800,000 people and is the thirteenth cause of human deaths [8, 9]. Airborne particles are those of solid or liquid dispersants larger than one molecule in diameter (0.0002 µm) and smaller than 500 µm. As a branch of pollutants, these materials are very diverse and complex, and their particle size and chemical composition, such as their concentration in the air, is an important feature of these materials [10, 11]. Suspended particles are sometimes in the form of live particles such as bacteria, algae, molds and spores, or in the form of non-living particles, including substances such as organic compounds; dust and sea salts are classified. Suspended particles are composed of the decomposition and disintegration of large pieces of material or the aggregation and aggregation of smaller particles, including molecules. The main source of suspended particulate matter by artificial sources of contamination includes the production and formation of aerosols (dispersed particles) of the main gas contaminants [12, 13].

High concentrations of suspended particulates are dangerous for humans, especially those with a history of respiratory illness. Diseases such as upper respiratory tract infections, pneumonia, pulmonary inflammation, cancerous effects, bronchitis, shortness of breath, heart disorders, adverse effects on the chest, and effects on defense and purification mechanisms are major particulate effects are suspended on humans [14, 15]. Therefore, identifying, investigating and monitoring the effects of air pollution on ecosystems has led to the development of environmental monitoring plans and sound planning with the aim of improving the output of industries to the environment and consequently these measurements can be improved [16].

The purpose of this study was to determine the concentration of PM$_{2.5}$ and PM$_{10}$ suspended particles in different Seasons of Khash cement company from Sistan and Baluchestan province.

Materials and methods

Research location

Khash city is located in 2 km from Zahedan, the capital of Sistan and Baluchistan province. The city has a warm and dry climate with a height of 2 m above sea level. Khash cement Company is the oldest cement production plant in the southeastern region of Iran in Sistan and Baluchestan province.

Sampling

This descriptive - analytical study was carried out in 2016-2017 on the peripheral particulate matter of Khash cement plant. Sampling was performed at 8 environmental stations of Khash cement company in spring, summer, autumn and winter. A total of 228 samples of peripheral particulate matter were sampled. The exact location of the stations under study at Khash cement company is presented in Table 1.

Parameters measurement

The standard method (No. BS-EN-12341) was
used for measuring particulate environment based on the photometry and the photometer. Sampling and measurement of ambient particulate matter was carried out during office hours with a device. In this method, the Dust Trak (Made in USA) device was first calibrated with a detection limit of 0.001 to 400 mg/m³. The device was positioned slightly and preferably slightly above the ground (1.5 m above ground). Flow was then adjusted and sampled for 60 min, taking into account wind direction and stable atmospheric conditions [17].

Statistical analysis

SPSS 24 was used for data analysis and Excel for drawing tables and diagrams. Kolmogorov-Smirnov test was used to evaluate the normality of the data. T-test was used to compare mean particle concentration in different seasons and one-way ANOVA and Duncan test were used to compare data in the studied stations.

Results and discussion

The amount of particulate matter was PM$_{2.5}$ 2.82 to 24.63 µg/m³, respectively. In the spring, autumn and winter seasons, the highest PM$_{2.5}$ content was observed at scale station (P<0.05). In summer, the amount of these particles was higher at the soil warehouse station (P<0.05). The highest PM$_{2.5}$ content was obtained in spring (24.32±2.51 µg/m³). The lowest amount of particulate matter PM$_{2.5}$ in different seasons were measured in substation (P<0.05). Comparison of mean PM$_{2.5}$ in different seasons showed that the amount of PM$_{2.5}$ in spring was higher than other seasons (P<0.05). Also, autumn season had the lowest amount of PM$_{2.5}$ peripheral particulate matter (P<0.05) (Table 2).

Table 1. Profile of sampling in Khash cement company 2016-2017

<table>
<thead>
<tr>
<th>Geographical position</th>
<th>Sampling location</th>
<th>Sampling time</th>
<th>Floor material</th>
<th>Pump flow (m³/min)</th>
<th>Suction volume (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Scale</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>Northwest</td>
<td>Soil warehouse</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>West</td>
<td>Turret guard</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>Southwest</td>
<td>Substation</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>South</td>
<td>Turret guard</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>Southeast</td>
<td>Entrance door</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>East</td>
<td>Sewage treatment</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
<tr>
<td>Northeast</td>
<td>Office of Education</td>
<td>60 min</td>
<td>Cement</td>
<td>0.0017</td>
<td>0.102</td>
</tr>
</tbody>
</table>

Table 2. Results of PM$_{2.5}$ peripheral particulate matter of Khash Cement Company (µg/m³), 2016-2017

<table>
<thead>
<tr>
<th>Sampling location</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>24.32±2.51</td>
<td>22.60±1.31</td>
<td>5.72±1.25</td>
<td>18.90±1.43</td>
</tr>
<tr>
<td>Soil warehouse</td>
<td>22.03±1.67</td>
<td>24.21±2.29</td>
<td>5±1.11</td>
<td>17.39±1.23</td>
</tr>
<tr>
<td>Turret guard</td>
<td>23.67±1.26</td>
<td>20.90±2.54</td>
<td>3.12±1.68</td>
<td>11.34±1.53</td>
</tr>
<tr>
<td>Substation</td>
<td>16.41±2.39</td>
<td>14.70±1.09</td>
<td>2.60±1.39</td>
<td>10.14±1.17</td>
</tr>
<tr>
<td>Turret guard</td>
<td>17.20±1.59</td>
<td>15.56±1.36</td>
<td>3.20±1.59</td>
<td>12.45±1.89</td>
</tr>
<tr>
<td>Entrance door</td>
<td>21.65±1.78</td>
<td>18.32±1.62</td>
<td>3.56±1.78</td>
<td>14.70±1.59</td>
</tr>
<tr>
<td>Sewage treatment</td>
<td>21±2.05</td>
<td>19.81±1.21</td>
<td>3.39±2.05</td>
<td>14.02±2.83</td>
</tr>
<tr>
<td>Office of Education</td>
<td>19.55±1.90</td>
<td>17.12±1.58</td>
<td>4.31±1.90</td>
<td>10.29±1.64</td>
</tr>
</tbody>
</table>

a, b, c, d showed a significant difference (P <0.05).
The amount of particulate matter was PM$_{10}$ 19.98 to 68.22 µg/m3, respectively. In the spring and autumn seasons, the highest PM$_{10}$ content was observed at scale station (P<0.05). In summer and winter, the amount of these particles was higher at the soil warehouse station (P<0.05). The highest PM$_{10}$ content was obtained in autumn (64.92±3.76 µg/m3). The lowest amount of particulate matter PM$_{10}$ in spring and summer were measured in substation (P<0.05), but the lowest amounts in the autumn at the entrance door and in winter was observed in wastewater treatment. Comparison of mean PM$_{10}$ in different seasons showed that the amount of PM$_{10}$ in winter was lower than other seasons (P<0.05) (Table 3).

In this study, the amount of PM$_{2.5}$ peripheral particulate matter in Cement Company was lower than WHO standard (25 µg/m3). Also PM$_{10}$ peripheral particulate matter was lower than 50 µg/m3 (WHO standard) [18] (Table 4). The US Environmental Protection Agency has set the standard PM$_{2.5}$ and PM$_{10}$ concentrations of environmental pollutants of 35 and 15 g/m3, respectively [19]. Most particles fall into the group of very fine particles that contain particles of diameter 0.1 µm or less. In terms of surface area, these particles are the most dominant airborne particulates but have a small share in the overall mass of the airborne particles. These portions of the particulate matter are mainly derived from combustion and are secondarily generated as secondary particles from gas to particle conversion [20, 11]. These particles are inherently unstable and, through coagulation and compression, become larger particles. Sulfates and nitrates are the predominant compounds in these particles. Fine particles include particles ranging in size from 0.1 to 2.5 µm, known as PM$_{2.5}$ along with fine particles. Fine particles basically contain particles that are created by combustion or result from coagulation.

Table 3. Results of PM$_{10}$ peripheral particulate matter of Khash cement company (µg/m3), 2016-2017

<table>
<thead>
<tr>
<th>Sampling location</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>46.32±1.25a</td>
<td>47.22±2.49a</td>
<td>63.17±4.67a</td>
<td>36.26±1.28a</td>
</tr>
<tr>
<td>Soil warehouse</td>
<td>43.03±2.35a</td>
<td>48.90±3.24a</td>
<td>64.92±3.76a</td>
<td>32.16±1.48b</td>
</tr>
<tr>
<td>Turret guard</td>
<td>27.67±1.40b</td>
<td>41.60±3.06b</td>
<td>33.12±2.38b</td>
<td>29.43±2.92e</td>
</tr>
<tr>
<td>Substation</td>
<td>23.41±1.75c</td>
<td>32.53±1.12c</td>
<td>44.10±2.67c</td>
<td>25.45±1.88d</td>
</tr>
<tr>
<td>Turret guard</td>
<td>31.20±1.60d</td>
<td>34.82±2.22d</td>
<td>39.79±1.46d</td>
<td>32.20±2.13e</td>
</tr>
<tr>
<td>Entrance door</td>
<td>41.65±1.39e</td>
<td>39.10±2.11e</td>
<td>30.63±1.44e</td>
<td>27.19±2.25f</td>
</tr>
<tr>
<td>Sewage treatment</td>
<td>43.65±1.18a</td>
<td>41.32±1.76b</td>
<td>32.51±1.22b</td>
<td>21.87±1.75e</td>
</tr>
<tr>
<td>Office of Education</td>
<td>39.55±1.28c</td>
<td>35.78±1.92d</td>
<td>42.36±1.39e</td>
<td>30.32±1.49f</td>
</tr>
</tbody>
</table>

*a, b, c, d, e, f showed a significant difference (P <0.05).

Table 4. Comparison of PM$_{2.5}$ and PM$_{10}$ peripheral particulates with WHO standard

<table>
<thead>
<tr>
<th>Mean</th>
<th>PM$_{2.5}$</th>
<th>PM$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>20.72±2.35a</td>
<td>37.06±2.62a</td>
</tr>
<tr>
<td>Summer</td>
<td>19.15±1.12a</td>
<td>40.14±1.98a</td>
</tr>
<tr>
<td>Autumn</td>
<td>3.86±1.48a</td>
<td>43.82±2.68b</td>
</tr>
<tr>
<td>Winter</td>
<td>13.65±1.59c</td>
<td>29.36±1.16c</td>
</tr>
<tr>
<td>Total mean</td>
<td>14.34±1.71</td>
<td>37.59±2.24c</td>
</tr>
</tbody>
</table>

*WHO 25 50

http://japh.tums.ac.ir
and compression of secondary particles. \(\text{PM}_{10}\) particles include all particles (fine particles, fine particles, and coarse particles) with a diameter of 10 \(\mu\text{m}\) or less [21, 22].

Airborne particulates of natural and human origin have significant effects on climate, the environment and human health [23]. Large structures such as cement factories that bring large amounts of dust particles into the environment always cause significant problems. Therefore, considering the level of contamination of these structures and the use of modern methods to control the pollution created by them such as bag filters, baggage, electrostatic precipitators and hybrid filters can greatly reduce environmental and health damage. Especially reduce the harmful effects for the staff in this area. In general, it can be concluded that an increase in the concentration of dust particles, in particular dust generated by industrial activity and a decrease in air quality, have adverse effects on human health in the long run [2, 24].

Conclusion

The particulate matter \(\text{PM}_{2.5}\) and \(\text{PM}_{10}\) in environment of Khash cement company were lower compared to the standard 25 and 50 \(\mu\text{g/m}^3\). According to the results, it can be stated that the suspended particles in environment of Khash cement company for human respiration were within acceptable limits.

Financial supports

This research was conducted with the financial support of Khash cement company.

Acknowledgements

The results of this research are supported by Cement Khash Company. The authors of the article thank the esteemed management and HSA unit of Khash Cement Company.

Competing interests

The authors declare that there are no competing interests.

Ethical considerations

Ethical issues have been completely observed by the authors.

References

http://japh.tums.ac.ir

http://japh.tums.ac.ir